Inhibition of potassium channel or adenylyl cyclase activation appears to contribute to the mechanisms by which a high-salt diet increases vascular tone. These effects were counteracted by orchidectomy in male Sprague Dawley rats.
Transplantation of neural progenitor cell (NPC) possessing the potential to differentiate into neurons may guard against spinal cord injury (SCI)- associated neuronal trauma. We propose that autologous-like NPC may reduce post-transplant immune response. The study used the rat SCI model to prove this concept. For isolation and expansion of rat NPC for cell-based SCI therapy, the in vitro protocol standardized with human NPC seemed suitable. The primary aim of this study is to select a cell/neural tissue-compatible biomaterial for improving NPC survival in vivo. The composition of the fibrin hydrogel is adjusted to obtain degradable, porous, and robust fibrin strands for supporting neural cell attachment, migration, and tissue regeneration. This study employed NPC culture to evaluate the cytocompatibility and suitability of the hydrogel, composed by adding graded concentrations of thrombin to a fixed fibrinogen concentration. The microstructure evaluation by scanning electron microscope guided the selection of a suitable composition for delivering the embedded cells. On adding more thrombin, fibrinogen clotted quickly but reduced porosity, pore size, and fiber strand thickness. The high activity of thrombin also affected NPC morphology and the in vitro cell survival. The selected hydrogel carried viable NPC and retained them at the injury site post-transplantation. The fibrin hydrogel played a protective role throughout the transfer process by providing cell attachment sites and survival signals. The fibrin and NPC together regulated the immune response at the SCI site reducing ED1+ve/ED2+ve macrophages in the early period of 8–16 d after injury. Migration of β-III tubulin+ve neural-like cells into the fibrin-injected control SCI is evident. The continuous use of a non-neurotoxic fibrin matrix could be a convenient strategy for in vitro NPC preparation, minimally invasive cell delivery, and better transplantation outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.