The connection between logic programming and formal argumentation has been studied starting from the landmark 1995 paper of Dung. Subsequent work has identified a standard translation from logic programs to (instantiated) argumentation frameworks, under which pairwise correspondences hold between various logic programming semantics and various formal argumentation semantics. This includes the correspondence between 3-valued stable and complete semantics, between well-founded and grounded semantics and between 2-valued stable (LP) and stable (argumentation) semantics. In the current paper, we show that the existing translation is able to yield the additional correspondence between ideal semantics for logic programming and ideal semantics for formal argumentation. We also show that correspondence does not hold between eager semantics for logic programming and eager semantics for formal argumentation, at least when translating from logic programming to formal argumentation. Overall, the current work should be seen as completing the analysis of correspondences between mainstream admissibility-based argumentation semantics and their logic programming counterparts.
Much like admissibility is the key concept underlying preferred semantics, strong admissibility is the key concept underlying grounded semantics, as membership of a strongly admissible set is sufficient to show membership of the grounded extension. As such, strongly admissible sets and labellings can be used as an explanation of membership of the grounded extension, as is for instance done in some of the proof procedures for grounded semantics. In the current paper, we present two polynomial algorithms for constructing relatively small strongly admissible labellings, with associated min-max numberings, for a particular argument. These labellings can be used as relatively small explanations for the argument's membership of the grounded extension. Although our algorithms are not guaranteed to yield an absolute minimal strongly admissible labelling for the argument (as doing do would have implied an exponential complexity), our best performing algorithm yields results that are only marginally bigger. Moreover, the runtime of this algorithm is an order of magnitude smaller than that of the existing approach for computing an absolute minimal strongly admissible labelling for a particular argument. As such, we believe that our algorithms can be of practical value in situations where the aim is to construct a minimal or near-minimal strongly admissible labelling in a time-efficient way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.