Full-color reflective photonic ellipsoidal polymer particles, capable of a dynamic color change, are created from dendronized brush block copolymers (den-BBCPs) self-assembled by solvent-evaporation from an emulsion. Surfactants composed of dendritic monomer units allow for the precise modulation of the interfacial properties of den-BBCP particles to transition in shape from spheres to striped ellipsoids. Strong steric repulsions between wedge-type monomers promote rapid self-assembly of polymers into large domains (i.e., 153 nm ≤ D ≤ 298 nm). Of note, highly ordered axially stacked lamellae (i.e., number of layers > 100) within an ellipsoid give rise to a near-perfect photonic multilayer. The reflecting color is readily tunable across the entire visible spectrum by altering the molecular weight from 477 to 1144 kDa. Finally, the photonic ellipsoids are functionalized with magnetic nanoparticles organized into bands on the particle surface to produce real-time on/off coloration by magnetic field-assisted activation. In total the reported photonic ellipsoidal particles represent a new class of switchable photonic materials.
We report current hysteresis in response to applied voltage in graphene quantum dots of average diameter 4.5 ± 0.55 nm, synthesized electrochemically using multiwalled carbon nanotubes. In response to step voltages, transient current decay, characteristic of deep and shallow level charge traps with time constants 186 ms and 6 s, is observed. Discharging current transients indicate charge storage of the order of 100 μC. Trap states are believed to arise due to the fast physisorption of external adsorbates, which are found to have a significant effect on charge transport and changes the resistance of the prepared device by an order of 3.
Super-resolution lithography holds the promise of achieving three-dimensional (3D) nanopatterning at deep subwavelength resolutions with high throughput. 3D super-resolution lithography schemes demonstrated thus far have all been serial in nature, primarily due to the lack of a photoresist chemistry that not only couples a saturable reversibly switchable reaction with a writing step but also has a low saturation threshold. Here, we demonstrate that combining the reversible photoisomerization of spirothiopyran with the thiol-Michael conjugate addition reaction achieves the necessary photochemical characteristics. Green light was found to saturate inhibition of the thiol-Michael addition writing step at very low intensity thresholds. By formulating a spirothiopyran-functionalized polyethylene glycol copolymer, we demonstrate spatial control over cross-linking using inhibition by green light. Kinetics measurements combined with photokinetic simulations show that interference lithography on a spirothiopyran maleimide-based writing system using conventional light sources (e.g., a 2 W green laser) should deliver super-resolution features (∼45 nm wide lines) in thick films (tens of microns) over large areas (hundreds of microns on a side). The unique combination of reversible photochromic switching of spirothiopyran with the thiol-Michael addition reaction marks an important step toward realizing a highly parallelized 3D super-resolution writing system.
Photonic Janus particles with a sphere fused to a cone are created from the phase separation of dendronized brush block copolymers (den-BBCP) and poly(4-vinylpyridine)-r-polystyrene (P4VP-r-PS) during the solvent evaporation of oil-in-water emulsions. Rapid self-assembly of den-BBCP generates well-ordered lamellar structures stacking along the long axis of the particles, producing structural colors that are dependent on the incident light angle. The colors are tunable over the visible spectrum by varying the molecular weight of den-BBCP. The P4VP-r-PS phase can undergo further surface modifications to produce multifunctional photonic Janus particles. Specifically, real-time magnetic control of the reflected color is achieved by coating the P4VP-r-PS phase with citric acid-capped Fe3O4 nanoparticles. Charged biomolecules (i.e., antibodies) are electrostatically immobilized to the Fe3O4 coating for potential applications in biosensing. As a demonstration, a new photonic sensor for the foodborne pathogen Salmonella is developed with antibody-modified photonic Janus particles, where the angle-dependent structural color plays a key role in the sensing mechanism.
The non-equilibrium kinetics of spirothiopyran monolayers are studied to enable large area interference lithography with feature dimensions that circumvent the diffraction barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.