Cropping systems with legumes play key roles in farming systems in sub-Saharan Africa. However, how commonly legume associations perform in low input-systems is not well-known. Here, we studied four legume species used in three systems in rotation with upland rice, i.e., groundnut monocropping, sorghum–cowpea intercropping, and velvet bean–crotalaria intercropping, in two fertilization managements on the previous rice, i.e., manure alone or complemented with mineral fertilization. Legume suitability was assessed using rhizobial and mycorrhizal colonization rates, plant biomass production, shoot N and P content, and biological N2 fixation based on their δ15N natural abundance. Shoot and root biomasses varied significantly between legume species and were positively correlated with nodule number (r = 0.49 and 0.74, p-value < 0.05 and <0.001, respectively) and the amount of fixed N (r = 0.73 and 0.50, p-value < 0.001 and <0.05, respectively). The proportion of plant N derived from N2 fixation also varied significantly between species, with a higher percentage for velvet bean (66%), compared to the other three species (50 to 60%). Legume roots were weakly colonized by AM fungi, with similar levels between species. Overall, fertilization management did not significantly impact legume biomass, symbioses, or N2 fixation, yet the organo-mineral fertilization significantly increased legume shoot P content. The lack of effect of mineral fertilization on N2 fixation and biomass could be due to other nutrient deficiencies (Ca, Mg, micronutrients), which can hamper symbioses with rhizobia and mycorrhizae.
The cultivation of grain legumes (e.g., common bean) in sub-Saharan Africa contributes to the provision of food for a growing population and delivers environmental benefits such as inputs of nitrogen (N) to crops and soil via symbiotic nitrogen fixation (SNF). However, the success of SNF is constrained by several factors such as the poor efficiency of native rhizobial strains to fix N, the low availability of phosphorus (P) and the acidity of soils. Two trials have been conducted in low-fertility tropical soils at the smallholder farm scale in Madagascar to assess the effects of Rhizobium inoculation together with inputs of P and lime on the growth of the common bean. We showed that inoculation with native strains of Rhizobium had significant effects on bean root nodulation, which was increased by up to 15-fold on plant growth, which increased by 78% and on bean yield, which increased by 126%. Moreover, we observed positive and significant relationships between inoculation with Rhizobium and P fertilization on nodulation, plant growth and yield. However, the addition of dolomite lime did not show any effect in our study. The addition of P decreased the mycorrhization rate of roots. Additional research is still needed to improve our understanding of soil fertility conditions (mainly on nutrient availability, including micronutrients) allowing better efficiency of legume symbionts (rhizobium and mycorrhiza) in such low-fertility soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.