Due to the lack of complete understanding of metabolic networks and reaction pathways, establishing a universal mechanistic model for mammalian cell culture processes remains a challenge. Contrarily, data-driven approaches for modeling these processes lack extrapolation capabilities. Hybrid modeling is a technique that exploits the synergy between the two modeling methods. Although mammalian cell cultures are among the most relevant processes in biotechnology and indeed looks ideal for hybrid modeling, their application has only been proposed but never developed in the literature. This study provides a quantitative assessment of the improvement brought by hybrid models with respect to the state-of-the-art statistical predictive models in the context of therapeutic protein production. This is illustrated using a dataset obtained from a 3.5 L fed-batch experiment. With the goal to robustly define the process design space, hybrid models reveal a superior capability to predict the time evolution of different process variables using only the initial and process conditions in comparison to the statistical models. Hybrid models not only feature more accurate prediction results but also demonstrate better robustness and extrapolation capabilities. For the future application, this study highlights the added value of hybrid modeling for model-based process optimization and design of experiments.
K E Y W O R D Sbiopharmaceuticals, hybrid models, mammalian culture, predictive modeling, process optimization
In a decade when Industry 4.0 and quality by design are major technology drivers of biopharma, automated and adaptive process monitoring and control are inevitable requirements and model‐based solutions are key enablers in fulfilling these goals. Despite strong advancement in process digitalization, in most cases, the generated datasets are not sufficient for relying on purely data‐driven methods, whereas the underlying complex bioprocesses are still not completely understood. In this regard, hybrid models are emerging as a timely pragmatic solution to synergistically combine available process data and mechanistic understanding. In this study, we show a novel application of the hybrid‐EKF framework, that is, hybrid models coupled with an extended Kalman filter for real‐time monitoring, control, and automated decision‐making in mammalian cell culture processing. We show that, in the considered application, the predictive monitoring accuracy of such a framework improves by at least 35% when developed with hybrid models with respect to industrial benchmark tools based on PLS models. In addition, we also highlight the advantages of this approach in industrial applications related to conditional process feeding and process monitoring. With regard to the latter, for an industrial use case, we demonstrate that the application of hybrid‐EKF as a soft sensor for titer shows a 50% improvement in prediction accuracy compared with state‐of‐the‐art soft sensor tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.