While HRQoL at population level is most affected by balance problems, spasticity, and depression in RRMS, the biggest HRQoL losses in PMS are caused by spasticity, paralysis, weakness, and pain. Many symptoms with the largest effects in individuals substantially contribute to the population disease burden.
BackgroundImmune checkpoint inhibitors (ICIs) have significantly improved the outcome in metastatic cutaneous melanoma (CM). However, therapy response is limited to subgroups of patients and clinically useful predictive biomarkers are lacking.MethodsTo discover treatment-related systemic changes in plasma and potential biomarkers associated with treatment outcome, we analyzed serial plasma samples from 24 patients with metastatic CM, collected before and during ICI treatment, with mass-spectrometry-based global proteomics (high-resolution isoelectric focusing liquid chromatography–mass spectrometry (HiRIEF LC-MS/MS)) and targeted proteomics with proximity extension assays (PEAs). In addition, we analyzed plasma proteomes of 24 patients with metastatic CM treated with mitogen-activated protein kinase inhibitors (MAPKis), to pinpoint changes in protein plasma levels specific to the ICI treatment. To detect plasma proteins associated with treatment response, we performed stratified analyses in anti-programmed cell death protein 1 (anti-PD-1) responders and non-responders. In addition, we analyzed the association between protein plasma levels and progression-free survival (PFS) by Cox proportional hazards models.ResultsUnbiased HiRIEF LC-MS/MS-based proteomics showed plasma levels’ alterations related to anti-PD-1 treatment in 80 out of 1160 quantified proteins. Circulating PD-1 had the highest increase during anti-PD-1 treatment (log2-FC=2.03, p=0.0008) and in anti-PD-1 responders (log2-FC=2.09, p=0.005), but did not change in the MAPKis cohort. Targeted, antibody-based proteomics by PEA confirmed this observation. Anti-PD-1 responders had an increase in plasma proteins involved in T-cell response, neutrophil degranulation, inflammation, cell adhesion, and immune suppression. Furthermore, we discovered new associations between plasma proteins (eg, interleukin 6, interleukin 10, proline-rich acidic protein 1, desmocollin 3, C-C motif chemokine ligands 2, 3 and 4, vascular endothelial growth factor A) and PFS, which may serve as predictive biomarkers.ConclusionsWe detected an increase in circulating PD-1 during anti-PD-1 treatment, as well as diverse immune plasma proteomic signatures in anti-PD-1 responders. This study demonstrates the potential of plasma proteomics as a liquid biopsy method and in discovery of putative predictive biomarkers for anti-PD-1 treatment in metastatic CM.
Introduction The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (cas) is a new technology that allows easier manipulation of the genome. Its potential to edit genes opened a new door in treatment development for incurable neurological monogenic diseases (NMGDs). The aim of this systematic review was to summarise the findings on the current development of CRISPR-cas for therapeutic purposes in the most frequent NMGDs and provide critical assessment. Methods and data acquisition We searched the MEDLINE and EMBASE databases, looking for original studies on the use of CRISPR-cas to edit pathogenic variants in models of the most frequent NMGDs, until end of 2017. We included all the studies that met the following criteria: 1. Peer-reviewed study report with explicitly described experimental designs; 2. In vitro , ex vivo , or in vivo study using human or other animal biological systems (including cells, tissues, organs, organisms); 3. focusing on CRISPR as the gene-editing method of choice; and 5. featured at least one NMGD. Results We obtained 404 papers from MEDLINE and 513 from EMBASE. After removing the duplicates, we screened 490 papers by title and abstract and assessed them for eligibility. After reading 50 full-text papers, we finally selected 42 for the review. Discussion Here we give a systematic summary on the preclinical development of CRISPR-cas for therapeutic purposes in NMGDs. Furthermore, we address the clinical interpretability of the findings, giving a comprehensive overview of the current state of the art. Duchenne’s muscular dystrophy (DMD) paves the way forward, with 26 out of 42 studies reporting different strategies on DMD gene editing in different models of the disease. Most of the strategies aimed for permanent exon skipping by deletion with CRISPR-cas. Successful silencing of the mHTT gene with CRISPR-cas led to successful reversal of the neurotoxic effects in the striatum of mouse models of Huntington’s disease. Many other strategies have been explored, including epigenetic regulation of gene expression, in cellular and animal models of: myotonic dystrophy, Fraxile X syndrome, ataxias, and other less frequent dystrophies. Still, before even considering the clinical application of CRISPR-cas, three major bottlenecks need to be addressed: efficacy, safety, and delivery of the systems. This requires a collaborative approach in the research community, while having ethical considerations in mind.
Myotonic Dystrophy type 1 multisystem involvement leads to functional impairment with an increased risk of falling. This multinational study estimates the prevalence of falls and fall-associated fractures. A web-based survey among disease-specific registries (Germany, UK and The Netherlands) was carried out among DM1 ambulant adults with a total of 573 responses retrieved. Results provided a risk ratio estimation of 30%-72% for falls and of 11%-17% for associated fractures. There was no significant difference for falls between male and female, but there was for fall-related fractures with a higher prevalence in women. Balance and leg weakness were the most commonly reported causes for falling. This study is based on a voluntary retrospective survey with naturally inherent limitations; however, the sample size allows for robust comparisons. The estimated risk of falls in this cohort with a mean age of 46 years compares to a previous estimation for a healthy population of over 65 years of age. These results suggest a premature-ageing DM1 phenotype with an increased risk of falling depending on age and disease severity that, so far, might have been underestimated. This may have clinical implications for the development of care guidelines and when testing new interventions in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.