Familial hyperkalemic hypertension is caused by pathogenic variants in genes of the CUL3 (cullin-3)-KLHL3 (kelch-like-family-member-3)-WNK (with no-lysine [K] kinase) pathway, manifesting clinically as hyperkalemia, metabolic acidosis, and high systolic blood pressure. The ubiquitin E3 ligase CUL3-KLHL3 targets WNK kinases for degradation to limit activation of the thiazide-sensitive NCC (Na-Cl cotransporter). All known variants in
CUL3
lead to exon 9 skipping (CUL3Δ9) and typically result in severe familial hyperkalemic hypertension and growth disturbances in patients. Whether other variants in
CUL3
cause familial hyperkalemic hypertension is unknown. Here, we identify a novel de novo heterozygous
CUL3
variant (CUL3Δ474–477) in a pediatric familial hyperkalemic hypertension patient with multiple congenital anomalies and reveal molecular mechanisms by which CUL3Δ474–477 leads to dysregulation of the CUL3-KLHL3-WNK signaling axis. Using patient-derived urinary extracellular vesicles and dermal fibroblasts, in vitro assays, and cultured kidney cells, we demonstrate that CUL3Δ474–477 causes reduced total CUL3 levels due to increased autoubiquitination. The CUL3Δ474–477 that escapes autodegradation shows enhanced modification with NEDD8 (neural precursor cell expressed developmentally down-regulated protein 8) and increased formation of CUL3-KLHL3 complexes that are impaired in ubiquitinating WNK4. Proteomic analysis of CUL3 complexes revealed that, in addition to increased KLHL3 binding, the CUL3Δ474–477 variant also exhibits increased interactions with other BTB (Bric-a-brac, Tramtrack, and Broad complex) substrate adaptors, providing a rationale for the patient’s diverse phenotypes. We conclude that the pathophysiological effects of CUL3Δ474–477 are caused by reduced CUL3 levels and formation of catalytically impaired CUL3 ligase complexes.
Introduction: Sialic acids are important contributors to the polyanionic component of the glomerular filtration barrier, which regulates permeability selectivity. Pathologic glomerular hyposialylation, associated with podocyte effacement, has been implicated in human and mouse glomerulopathies. Oral treatment with N-acetylmannosamine (ManNAc), the uncharged precursor of sialic acid, ameliorates glomerular pathology in different models of glomerular disease. Methods: Here we explore the sialylation status of kidney biopsies obtained from 27 subjects with various glomerular diseases using lectin histochemistry. Results: We identified severe glomerular hyposialylation in 26% of the biopsies. These preliminary findings suggest that this condition may occur relatively frequently and may be a novel target for therapy. We describe the background, rationale, and design of a phase 1 study to test safety, tolerability, and pharmacokinetics of ManNAc in subjects with primary podocyte diseases. Conclusion: We recently demonstrated that ManNAc was safe and well tolerated in a first-inhuman phase 1 study in subjects with UDP-N-acetylglucosamine (GlcNAc) 2-epimerase/ManNAc kinase (GNE) myopathy, a disorder of impaired sialic acid synthesis. Using previous preclinical and clinical data, we propose to test ManNAc therapy for subjects with primary glomerular diseases. Even though the exact mechanisms, affected cell types, and pathologic consequences of glomerular hyposialylation need further study, treatment with this physiological monosaccharide could potentially replace or supplement existing glomerular diseases therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.