Microfluidic intracellular delivery approaches based on plasma membrane poration have shown promise for addressing the limitations of conventional cellular engineering techniques in a wide range of applications in biology and medicine. However, the inherent stochasticity of the poration process in many of these approaches often results in a trade-off between delivery efficiency and cellular viability, thus potentially limiting their utility. Herein, we present a novel microfluidic device concept that mitigates this trade-off by providing opportunity for deterministic mechanoporation (DMP) of cells en masse. This is achieved by the impingement of each cell upon a single needle-like penetrator during aspiration-based capture, followed by diffusive influx of exogenous cargo through the resulting membrane pore, once the cells are released by reversal of flow. Massive parallelization enables high throughput operation, while single-site poration allows for delivery of small and large-molecule cargos in difficult-to-transfect cells with efficiencies and viabilities that exceed both conventional and emerging transfection techniques. As such, DMP shows promise for advancing cellular engineering practice in general and engineered cell product manufacturing in particular.
BackgroundHigh-frequency optical coherence tomography (HF-OCT) is an intravascular imaging method that allows for volumetric imaging of flow diverters in vivo.ObjectiveTo examine the hypothesis that a threshold for both volume and area of communicating malapposition can be predictive of early aneurysm occlusion.MethodsFifty-two rabbits underwent elastase aneurysm formation, followed by treatment with a flow diverter. At the time of implant, HF-OCT was acquired to study the rate and degree of communicating malapposition. Treated aneurysms were allowed to heal for either 90 or 180 days and euthanized following catheter angiography. Healing was dichotomized into aneurysm remnant or neck remnant/complete occlusion. Communicating malapposition was measured by HF-OCT using a semi-automatic algorithm able to detect any points where the flow diverter was more than 50 µm from the vessel wall. This was then summed across image slices to either a volume or area. Finally, a subsampled population was used to train a statistical classifier for the larger dataset.ResultsNo difference in occlusion rate was found between device type or follow-up time (p=0.28 and p=0.67, respectively). Both volume and area of malapposition were significantly lower in aneurysms with a good outcome (p<0.001, both). From the statistical model, a volume of less than 0.56 mm3 or a normalized area less than 0.69 as quantified by HF-OCT was predictive of occlusion (p<0.001, each).ConclusionsHF-OCT allows for measurements of both volume and area of malapposition and, from these measurements, an accurate prediction for early aneurysm occlusion can be made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.