Context Crop production in Eastern Himalaya is constrained by combined effects of soil acidity and moisture deficit during post monsoon under a changing climate. Aim This study aimed to identify potential buckwheat genotypes and stress mechanisms in hill environments of Meghalaya (India). Method Field and microcosm experiments were conducted to study field performance, genotypic variability and physio-morphological efficiency in buckwheat. Key results Substantial genetic variability for shoot length (30.3–110 cm), crop canopy distribution (3.0–7.5 number of primary branches), leaf area retention (15.7–60.2 cm2/two leaves), 1000 seed weight (16.2–34.7 g) and seed yield (0.088–1.31 metric tonne (MT)/ha) was observed. Mean grain yield of buckwheat genotypes was 0.446 MT/ha whereas IC13411, IC24298 and IC37305 produced significantly higher seed yield (1.31, 1.28 and 1.14 MT/ha, respectively) accounting to 1.93, 1.87 and 1.67 times higher than average yield (0.680 MT/ha). Genotypes like IC42416, EC323730 and EC218784 have lower crop yields (0.8, 1.02, 0.93 MT/ha respectively). Interestingly, few high yielders (IC13411 and IC24298) exhibited higher photosynthetic rate (46.1 and 32.3 μmol/m2.s), increased stomatal conductance (311.0 and 326.2 mmol/m2.s), leaf chlorophyll (2.47 and 2.55 mg/g fresh weight (FW)) and carotenoids (95 and 106.3 μg/g FW). Chlorophyll a and b ratio (3.3 and 3.0) and total chlorophyll to carotenoids (4.2 and 4.0) were higher in high yielders (IC13411 and IC24298) compared to other low yielders. Conclusions Robust root systems, stomatal structure and higher cuticle wax ideally enhanced water use efficiency (WUE) and drought tolerance in high-yielding buckwheat genotypes. Implications IC13411 and IC24298 are promising for enhanced productivity in the mountainous ecosystem of Meghalaya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.