Rhythmic activity in the delta frequency range (0.5–3 Hz) is a prominent feature of brain dynamics. Here, we examined whether spontaneous delta oscillations, as found in invasive recordings in awake animals, can be observed in non-invasive recordings performed in humans with magnetoencephalography (MEG). In humans, delta activity is commonly reported when processing rhythmic sensory inputs, with direct relationships to behaviour. However, rhythmic brain dynamics observed during rhythmic sensory stimulation cannot be interpreted as an endogenous oscillation. To test for endogenous delta oscillations we analysed human MEG data during rest. For comparison, we additionally analysed two conditions in which participants engaged in spontaneous finger tapping and silent counting, arguing that internally rhythmic behaviours could incite an otherwise silent neural oscillator. A novel set of analysis steps allowed us to show narrow spectral peaks in the delta frequency range in rest, and during overt and covert rhythmic activity. Additional analyses in the time domain revealed that only the resting state condition warranted an interpretation of these peaks as endogenously periodic neural dynamics. In sum, this work shows that using advanced signal processing techniques, it is possible to observe endogenous delta oscillations in non-invasive recordings of human brain dynamics.
Neural tissue engineering has recently emerged as an alternative strategy to repair nerve damage and promote nerve regeneration. It involves the fabrication of scaffolds with properties mimicking those of the natural extracellular matrix for guiding a three-dimensional (3D) neural regeneration.These engineered constructs, in addition to mechanical support, should be also capable of providing proper chemical and electrical stimuli for adhesion, migration, and proliferation of the neural cells. In this study, we developed conductive composite hydrogel films based on gelatin and carbon black (CB) as scaffolds for neural tissue engineering applications. The presented hydrogel constructs were fabricated in the form of films using the solvent casting method after dispersing several concentrations of CB in a 5 % (w/v) gelatin solution along with (3-glycidoxypropyl) trimethoxysilane (GPTMS) as the crosslinking agent at a concentration of 1.84 % (v/v). The CB concentrations of 0.3 %, 0.5 %, 0.7 %, and 0.9 % (w/w) with respect to the gelatin amount were chosen. The morphological, compositional, swelling, dissolution, electrical, mechanical, and wettability properties together were characterized as function of CB content and compared with those of pure gelatin-based hydrogel. Results demonstrated that the incorporation of different quantities of CB relatively reduced the water uptake capability of the films and increased the stability in water of the gelatin matrix. Findings from the mechanical tests revealed that composite hydrogels have a lower elastic modulus with respect to the pure gelatin matrix. Moreover, it was found that the incorporation of incremental CB concentrations kept the wettability surface property unchanged while the electrical characterization of the proposed structures showed a reduction of the electrical impedance. Overall, the study suggests that the composite structures could be used as a potential candidate for fabrication of scaffolds for neural regeneration with tunable electrical and mechanical properties by varying the CB concentration in a finite range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.