In this letter, we present a comparative experimental–simulation study of Au-nanodisc-enhanced upconversion of 1500 nm light in an Er3+ doped TiO2 thin film. The geometry of the Au nanodiscs was guided by finite-element simulations based on a single nanodisc in a finite computational domain and controlled experimentally using electron-beam lithography. The surface-plasmon resonances (SPRs) exhibited a well-known spectral red shift with increasing diameter, well explained by the model. However, an experimentally observed double-peak SPR, which resulted from inter-particle interactions, was expectedly not captured by the single-particle model. At resonance, the model predicted a local-field enhancement of the upconversion yield, and experimentally, the luminescence measurements showed such enhancement up to nearly 7 fold from a nanodisc with 315 nm diameter and 50 nm height. The upconversion enhancement agreed qualitatively with the theoretical predictions, however with 3–5 times higher enhancement, which was attributed to scattered light from neighboring particles.
We propose a simplified rate-equation model for the 1500 nm to 980 nm upconversion in Er 3+ . The simplifications, based on typical experimental conditions as well as on conclusions based on previously published more advanced models, enable an analytical solution of the rate equations, which reproduces known properties of upconversion. We have compared the model predictions with intensity-dependent measurements on four samples with different optical properties, such as upconversion-luminescence yield and the characteristic lifetime of the 4 I 13/2 state. The saturation of the upconversion is in all cases well-described by the model over several orders of magnitude in excitation intensities. Finally, the model provides a new measure for the quality of upconverter systems based on Er 3+ -the saturation intensity. This parameter provides valuable information on upconversion parameters such as the rates of energy-transfer upconversion and cross-relaxation. In the present investigation, we used the saturation intensity to conclude that the differences in upconversion performance of the investigated samples are mainly due to differences in the nonradiative relaxation rates. * brianj@phys.au.dk 1 N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959). 2 F. Auzel, J. Lumin. 31-32, 759 (1984).
Organic photovoltaics (OPV) has recently reached power conversion efficiencies of 17.3%, making it a green technology that not only offers short energy payback times and diverse photovoltaic integration schemes, but also can deliver
Upconversion of sunlight with energy below the band gap of a solar cell is a promising technique for enhancing the cell efficiency, simply by utilizing a larger part of the solar spectrum. The present topical review addresses this concept and discusses the material properties needed for an efficient upconversion process with focus on both silicon and organic solar cells. To design efficient upconverters, insight into topics such as quantum-optics, nano-optics, numerical modeling, optimization, material fabrication, and material characterization is paramount, and the necessary concepts are introduced throughout the review. Upconversion modeling is done using rate equations, while optical modeling is done by solving Maxwell's equations using the finite element method. Topology optimization is introduced and used to generate geometries of gold nanoparticles capable of greatly enhancing the upconversion yield. Fabrication and experimental characterization methods are discussed. Some recent results are presented and finally the possibility of designing upconverting materials capable of increasing the short-circuit current in a solar cell is discussed.
The upconversion luminescence (UCL) of colloidal lanthanide-doped upconversion nanocrystals (UCNCs) can be improved either by precise encapsulation of the surface by optically inert shells around the core, by an alteration of the nearby environment via metal nanoparticles, or by a combination of both. Considering their potential importance in crystalline silicon photovoltaics, the present study investigates both effects for two-dimensional arrangements of UCNCs. Using excitation light of 1500 nm wavelength, we study the variation in the upconversion luminescence from an Er 3+ -doped NaYF 4 core as a function of the thickness of a NaLuF 4 shell in colloidal solutions as well as in spin-cast-assisted self-assembled monolayers of UCNCs. The observed UCL yields and decay times of Er 3+ ions of the UCNCs increase with increasing shell thickness in both cases, and nearly no variation in decay times is observed in the transition of the UCNCs from solution to film configurations. The luminescence efficiency of the UCNC monolayers is further enhanced by electron-beam-lithographic-designed Au nanodiscs deposited either on top of or buried within the monolayer. It is observed that the improvement by the nanocrystal shells is greater than that of the Au nanodiscs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.