Background: Optimal anti-bacterial activity of meropenem requires maintenance of its plasma concentration (Cp) above the minimum inhibitory concentration (MIC) of the pathogen for at least 40% of the dosing interval (fT > MIC > 40). We aimed to determine whether a 3-h extended infusion (EI) of meropenem achieves fT > MIC > 40 on the first and third days of therapy in patients with severe sepsis or septic shock. We also simulated the performance of the EI with respect to other pharmacokinetic (PK) targets such as fT > 4 × MIC > 40, fT > MIC = 100, and fT > 4 × MIC = 100.Methods: Arterial blood samples of 25 adults with severe sepsis or septic shock receiving meropenem 1000 mg as a 3-h EI eight hourly (Q8H) were obtained at various intervals during and after the first and seventh doses. Plasma meropenem concentrations were determined using a reverse-phase high-performance liquid chromatography assay, followed by modeling and simulation of PK data. European Committee on Antimicrobial Susceptibility Testing (EUCAST) definitions of MIC breakpoints for sensitive and resistant Gram-negative bacteria were used. Results:A 3-h EI of meropenem 1000 mg Q8H achieved fT > 2 µg/mL > 40 on the first and third days, providing activity against sensitive strains of Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. However, it failed to achieve fT > 4 µg/mL > 40 to provide activity against strains susceptible to increased exposure in 33.3 and 39.1% patients on the first and the third days, respectively. Modeling and simulation showed that a bolus dose of 500 mg followed by 3-h EI of meropenem 1500 mg Q8H will achieve this target. A bolus of 500 mg followed by an infusion of 2000 mg would be required to achieve fT > 8 µg > 40. Targets of fT > 4 µg/mL = 100 and fT > 8 µg/mL = 100 may be achievable in two-thirds of patients by increasing the frequency of dosing to six hourly (Q6H). Conclusions:In patients with severe sepsis or septic shock, EI of 1000 mg of meropenem over 3 h administered Q8H is inadequate to provide activity (fT > 4 µg/mL > 40) against strains susceptible to increased exposure, which requires © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article' s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article' a bolus of 500 mg followed by EI of 1500 mg Q8H. While fT > 8 µg/mL > 40 require escalation of EI dose, fT > 4 µg/ mL = 100 and fT > 8 µg/mL = 100 require escalation of both EI dose and frequency.
A bstract Typical manifestations of coronavirus disease (COVID-19) involve the upper and lower respiratory tract. But as the pandemic surges, we are encountering numerous case reports and series of extrapulmonary presentations of COVID-19 in the outpatient department. Abundant retrospective data have also cited various extrapulmonary complications in the hospitalized COVID-19 patients. This knowledge needs to be condensed and disseminated in order to improve COVID-19 surveillance and to reduce the accidental exposure of healthcare workers. Our review suggests that gastrointestinal tract, cardiovascular system, nervous system, renal system, and manifestations due to hematological abnormalities are common masqueraders to watch out for. How to cite this article Adukia SA, Ruhatiya RS, Maheshwarappa HM, Manjunath RB, Jain GN. Extrapulmonary Features of COVID-19: A Concise Review. Indian J Crit Care Med 2020;24(7):575–580.
A bstract Background Coronavirus disease-2019 (COVID-19) causes various cardiopulmonary manifestations. Bedside ultrasound helps in the rapid diagnosis of these manifestations. Vscan Extend™ (GE, Wauwatosa, WI, USA) is a handheld ultrasound device with a dual probe and an artificial intelligence application to detect ejection fraction. It can help in reducing the time for diagnosis, duration, and the number of healthcare workers exposed to COVID-19. This is a prospective observational study comparing the cardiorespiratory parameters and time duration for assessment between Vscan Extend™ and the conventional ultrasound machine. Materials and methods Paired observations were made in 96 COVID-19 patients admitted to the intensive care unit by two intensivists. Intensivist A used the Vscan Extend™ device to assess the cardiac function, lung fields, diaphragm, deep veins, and abdomen. Intensivist B used clinical examination, X-ray chest, ECG, and conventional echocardiogram for assessment. The agreement between the findings and the time duration required in both the methods was compared. Results The use of handheld ultrasound has significantly decreased the duration of bedside examination of patients than the conventional method. The median duration of examination using handheld ultrasound was 9 (8.0–11.0) minutes, compared to 20 (17–22) minutes with the conventional method ( P < 0.001). The Cohen's kappa coefficient was 1.0 for left ventricular systolic function, most of the lung fields, and diaphragmatic movement. C onclusion Vscan Extend™ helps in the rapid identification and diagnosis of cardiopulmonary manifestations in COVID-19 patients. The agreement between the handheld device and the conventional method proves its efficacy and safety. CTRI N umber CTRI/2020/07/026701 How to cite this article Maheshwarappa HM, Mishra S, Kulkarni AV, Gunaseelan V, Kanchi M. Use of Handheld Ultrasound Device with Artificial Intelligence for Evaluation of Cardiorespiratory System in COVID-19. J Crit Care Med 2021;25(5):524–527.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.