We study the classical Landau–Levich dip-coating problem in the case where the interface has significant elasticity. One aim of this work is to unravel the effect of surface-adsorbed hydrophobic particles on Landau–Levich flow. Motivated by recent findings (Vella, Aussillous & Mahadevan, Europhys. Lett., vol. 68, 2004, pp. 212–218) that a jammed monolayer of adsorbed particles on a fluid interface makes it respond akin to an elastic solid, we use the Helfrich elasticity model to study the effect of interfacial elasticity on Landau–Levich flow. We define an elasticity number, $\mathit{El}$, which represents the relative strength of viscous forces to elasticity. The main assumptions of the theory are that $\mathit{El}$ be small, and that surface tension effects are negligible. The shape of the free surface is formulated as a nonlinear boundary value problem: we develop the solution as an asymptotic expansion in the small parameter ${\mathit{El}}^{1/ 7} $ and use the method of matched asymptotic expansions to determine the film thickness as a function of $\mathit{El}$. The solution to the shape of the static meniscus is not as straightforward as in the classical Landau–Levich problem, as evaluation of higher-order effects is necessary in order to close the problem. A remarkable aspect of the problem is the occurrence of multiple solutions, and five of these are found numerically. In any event, the film thickness varies as ${\mathit{El}}^{4/ 7} $ in qualitative agreement with the experiments of Ouriemi & Homsy (Phys. Fluids, 2013, in press).
A vortex placed at a density interface winds it into an ever-tighter spiral. We show that this results in a combination of a centrifugal Rayleigh–Taylor (CRT) instability and a spiral Kelvin–Helmholtz (SKH) type of instability. The SKH instability arises because the density interface is not exactly circular, and dominates at large times. Our analytical study of an inviscid idealized problem illustrates the origin and nature of the instabilities. In particular, the SKH is shown to grow slightly faster than exponentially. The predicted form lends itself for checking by a large computation. From a viscous stability analysis using a finite-cored vortex, it is found that the dominant azimuthal wavenumber is smaller for lower Reynolds number. At higher Reynolds numbers, disturbances subject to the combined CRT and SKH instabilities grow rapidly, on the inertial time scale, while the flow stabilizes at low Reynolds numbers. Our direct numerical simulations are in good agreement with these studies in the initial stages, after which nonlinearities take over. At Atwood numbers of 0.1 or more, and a Reynolds number of 6000 or greater, both stability analysis and simulations show a rapid destabilization. The result is an erosion of the core, and breakdown into a turbulence-like state. In studies at low Atwood numbers, the effect of density on the inertial terms is often ignored, and the density field behaves like a passive scalar in the absence of gravity. The present study shows that such treatment is unjustified in the vicinity of a vortex, even for small changes in density when the density stratification is across a thin layer. The study would have relevance to any high-Péclet-number flow where a vortex is in the vicinity of a density-stratified interface.
We study the stability of a vortex in an axisymmetric density distribution. It is shown that a light-cored vortex can be unstable in spite of the 'stable stratification' of density. Using a model flow consisting of step jumps in vorticity and density, we show that a wave interaction mediated by shear is the mechanism for the instability. The requirement is for the density gradient to be placed outside the vortex core but within the critical radius of the Kelvin mode. Conversely, a heavy-cored vortex, found in other studies to be unstable in the centrifugal Rayleigh-Taylor sense, is stabilized when the density jump is placed in this region. Asymptotic solutions at small Atwood number At show growth rates scaling as At 1/3 close to the critical radius, and At 1/2 further away. By considering a family of vorticity and density profiles of progressively increasing smoothness, going from a step to a Gaussian, it is shown that sharp gradients are necessary for the instability of the light-cored vortex, consistent with recent work which found Gaussian profiles to be stable. For sharp gradients, it is argued that wave interaction can be supported due to the presence of quasi-modes. Probably for the first time, a quasi-mode which decays exponentially is shown to interact with a neutral wave to give exponential growth in the combined case. We finally study the nonlinear stages using viscous direct numerical simulations. The initial exponential instability of light-cored vortices is arrested due to a restoring centrifugal buoyancy force, leading to stable non-axisymmetric structures, such as a tripolar state for an azimuthal wavenumber of 2. The study is restricted to two dimensions, and neglects gravity.
We propose an alternative to the prevailing framework for modelling tear-film breakup, which posits a layered structure with a mucus layer next to the cornea and an aqueous layer on top. Experimental evidence shows continuous variation of mucin concentration throughout the tear film, with no distinct boundary between the two layers. Thus, we consider a continuous-viscosity model that replaces the mucus and aqueous layers by a single liquid layer with continuous profiles of mucin concentration and viscosity, which are governed by advection–diffusion of mucin. The lipids coating the tear film are treated as insoluble surfactants as previously, and slip is allowed on the ocular surface. Using the thin-film approximation, we carry out linear stability analysis and nonlinear numerical simulations of tear-film breakup driven by van der Waals attraction. Results show that for the same average viscosity, having more viscous material near the ocular surface stabilizes the film and prolongs the breakup time. Compared with the layered models, the continuous-viscosity model predicts film breakup times that are in better agreement with experimental data. Finally, we also suggest a hydrodynamic explanation for how pathological loss of membrane-associated mucins may lead to faster breakup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.