Light-matter interactions can be controlled by manipulating the photonic environment. We uncovered an optical topological transition in strongly anisotropic metamaterials that results in a dramatic increase in the photon density of states-an effect that can be used to engineer this interaction. We describe a transition in the topology of the iso-frequency surface from a closed ellipsoid to an open hyperboloid by use of artificially nanostructured metamaterials. We show that this topological transition manifests itself in increased rates of spontaneous emission of emitters positioned near the metamaterial. Altering the topology of the iso-frequency surface by using metamaterials provides a fundamentally new route to manipulating light-matter interactions.
Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons-elementary polar excitations bound to surfaces and interfaces of nanostructured good metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects such as quantum plasmonics based on quantum-mechanical properties of both underlying materials and plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists and applied scientists and engineers.
Here, we present the optical equivalent of the Lifshitz transition in strongly anisotropic metamaterials. When one of the components of the dielectric permittivity tensor of such a composite changes sign, the corresponding isofrequency surface transforms from an ellipsoid to a hyperboloid. Since the photonic density of states can be related to the volume enclosed by the isofrequency surface, such a topological transition in a metamaterial leads to a dramatic change in the photonic density of states, with a resulting effect on every single physical parameter related to the metamaterial -from thermodynamic quantities such as its equilibrium electromagnetic energy to the nonlinear optical response to quantumelectrodynamic effects such as spontaneous emission. In the present paper, we demonstrate the modification of spontaneous light emission from quantum dots placed near the surface of the metamaterial undergoing the topological Lifshitz transition, and present the theoretical description of the effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.