Ambush foragers must employ a long-distance dispersal strategy to maximize reproductive success in the absence of hosts. This hypothesis was tested by comparing lateral dispersal of the ambusher, Steinernema carpocapsae , and the cruiser, Heterorhabditis bacteriophora , nematodes from infected host cadavers in autoclaved, silt-loam soil in large microcosms (0.05-1.5 m(2)) with or without vegetation in the absence of hosts. Dispersal was estimated by taking soil cores (5 × 2 cm in diameter) from the microcosms at different intervals (6-240 hr) and distances (3.8-61 cm) from the infected host cadavers and baiting with Galleria mellonella larvae. The numbers of baited larvae killed and the numbers of infective juveniles (IJs) penetrated in dead baits were counted to compute the percentage of IJs dispersed from the source cadavers, based on the emergence potential and penetration efficiency of the 2 species, and analyzed. Vegetation enhanced dispersal of both species but more so for H. bacteriophora . Although the pattern of dispersal differed spatio-temporally for the 2 species, average population displacement was similar (∼6 cm/day). A majority of the S. carpocapsae population ambushed close to the source cadaver (<3.8 cm), whereas a majority of H. bacteriophora population dispersed between 7-12 cm away from the source cadaver. About 4% of the S. carpocapsae population dispersed faster than the fastest H. bacteriophora , reaching 30-61 cm, compared to only 2% of the H. bacteriophora population dispersing this far. This use of 'sprinters' for long-distance dispersal may represent an adaptive dispersal strategy by the otherwise ambush forager S. carpocapsae in the absence of hosts.
It has been suggested that fruit wastes including dropped and unharvested fruits, and fruit byproducts (i.e., pomace) found in fruit plantings and cideries or wine-making facilities could serve as potential off-season breeding sites for spotted wing Drosophila (Drosophila suzukii Matsumura (Diptera: Drosophilidae)). This idea, however, has yet to be widely tested. The goal of our study was to determine the potential of dropped fruit and fruit wastes as Fall spotted wing Drosophila breeding resources in Michigan, USA. Fruit waste samples were collected from 15 farms across the lower peninsula of Michigan and were evaluated for spotted wing Drosophila and other drosophilid emergence and used in host suitability bioassays. All of the dropped apples, pears, grapes, and raspberries and 40% of apple and 100% of grape fruit pomace evaluated were found to contain spotted wing Drosophila with the highest numbers collected from dropped grapes and pears. Greater spotted wing Drosophila recovery was found in fruit wastes at sites attached with cideries and wine-making facilities and with multiple cultivated fruit crops than sites with no cideries and only one crop. Females oviposited in raspberry, pear, apple, grape, apple pomace and grape pomace samples with the highest rates of reproduction in raspberries. Our results demonstrate that fruit wastes including dropped berry, pomme and stone fruits, as well as fruit compost may be important late season reproductive resources for spotted wing Drosophila.
Entomopathogenic nematodes have been classified into cruisers (active searchers) and ambushers (sit and wait foragers). However, little is known about their dispersal and foraging behavior at population level in soil. We studied lateral dispersal of the ambush foraging Steinernema carpocapsae (ALL strain) and cruise foraging Heterorhabditis bacteriophora (GPS11 strain) from infected host cadavers in microcosms (0.05 m2) containing Wooster silt-loam soil (Oxyaquic fragiudalf) and vegetation in the presence or absence of non-mobile and mobile hosts. Results showed that the presence of a non-mobile host (Galleria mellonella larva in a wire mesh cage) enhanced H. bacteriophora dispersal for up to 24 hr compared with no-host treatment, but had no impact on S. carpocapsae dispersal. In contrast, presence of a mobile host (G. mellonella larvae) increased dispersal of S. carpocapsae compared with no host treatment, but had no effect on H. bacteriophora dispersal. Also H. bacteriophora was better at infecting non-mobile than mobile hosts released into the microcosms and S. carpocapsae was better at infecting mobile than non-mobile hosts, thus affirming the established cruiser-ambusher theory. However, results also revealed that a large proportion of infective juveniles (IJs) of both species stayed near (≤ 3.8 cm) the source cadaver (88-96% S. carpocapsae; 67–79% H. bacteriophora), and the proportion of IJs reaching the farthest distance (11.4 cm) was significantly higher for S. carpocapsae (1.4%) than H. bacteriophora (0.4%) in the presence of mobile hosts. S. carpocapsae also had higher average population displacement than H. bacteriophora in the presence of both the non-mobile (5.07 vs. 3.6 cm/day) and mobile (8.06 vs. 5.3 cm/day) hosts. We conclude that the two species differ in their dispersal and foraging behavior at the population level and this behavior is affected by both the presence and absence of hosts and by their mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.