Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
The clinical outcomes associated with Zika virus (ZIKV) in the Americas have been well documented, but other aspects of the pandemic, such as attack rates and risk factors, are poorly understood. We prospectively followed a cohort of 1453 urban residents in Salvador, Brazil, and, using an assay that measured immunoglobulin G3 (IgG3) responses against ZIKV NS1 antigen, we estimated that 73% of individuals were infected during the 2015 outbreak. Attack rates were spatially heterogeneous, varying by a factor of 3 within a community spanning 0.17 square kilometers. Preexisting high antibody titers to dengue virus were associated with reduced risk of ZIKV infection and symptoms. The landscape of ZIKV immunity that now exists may affect the risk for future transmission.
A stabilized form of the respiratory syncytial virus (RSV) fusion (F) protein has been explored as a vaccine to prevent viral infection because it presents several potent neutralizing epitopes. Here, we used a structure-based rational design to optimize antigen presentation and focus antibody (Ab) responses to key epitopes on the pre-fusion (pre-F) protein. This protein was fused to ferritin nanoparticles (pre-F-NP) and modified with glycans to mask nonneutralizing or poorly neutralizing epitopes to further focus the Ab response. The multimeric pre-F-NP elicited durable pre-F–specific Abs in nonhuman primates (NHPs) after >150 days and elicited potent neutralizing Ab (NAb) responses in mice and NHPs in vivo, as well as in human cells evaluated in the in vitro MIMIC system. This optimized pre-F-NP stimulated a more potent Ab response than a representative pre-F trimer, DS-Cav1. Collectively, this pre-F vaccine increased the generation of NAbs targeting the desired pre-F conformation, an attribute that facilitates the development of an effective RSV vaccine.
Leptospirosis is the leading zoonotic disease in terms of morbidity and mortality worldwide. Effective prevention is urgently needed as the drivers of disease transmission continue to intensify. The key challenge has been developing a widely applicable vaccine that protects against the >300 serovars that can cause leptospirosis. Live attenuated mutants are enticing vaccine candidates and poorly explored in the field. We evaluated a recently characterized motility-deficient mutant lacking the expression of a flagellar protein, FcpA. Although the fcpA- mutant has lost its ability to cause disease, transient bacteremia was observed. In two animal models, immunization with a single dose of the fcpA- mutant was sufficient to induce a robust anti-protein antibodies response that promoted protection against infection with different pathogenic Leptospira species. Furthermore, characterization of the immune response identified a small repertoire of biologically relevant proteins that are highly conserved among pathogenic Leptospira species and potential correlates of cross-protective immunity.
Background The prevalence of developmental alterations associated with in-utero Zika virus (ZIKV) exposure in children is not well understood. Furthermore, estimation of the Population Attributable Fraction (PAF) of developmental alterations attributed to ZIKV has not been performed due to lack of population-based cohorts with data on symptomatic and asymptomatic ZIKV exposures and an appropriate control group. The aim of this study was to characterize neurodevelopmental outcomes of children at 11 to 32 months of age with intrauterine ZIKV exposure and estimate the PAF of alterations secondary to ZIKV exposure. Methodology/Principal findings We performed a cohort of biannual community-based prospective serosurveys in a slum community in Salvador, Brazil. We recruited women participating in our cohort, with a documented pregnancy from January 2015 to December 2016 and children born to those mothers. Children were classified as ZIKV exposed in utero (born from women with ZIKV seroconversion during pregnancy) or unexposed (born from women without ZIKV seroconversion or that seroconverted before/after pregnancy) by using an IgG monoclonal antibody blockade-of-binding (BoB). We interviewed mothers and performed anthropometric, audiometric, ophthalmological, neurologic, and neurodevelopmental evaluations of their children at 11 to 32 months of age. Among the 655 women participating in the cohort, 66 (10%) were pregnant during the study period. 46 (70%) of them completed follow-up, of whom ZIKV seroconversion occurred before, during, and after pregnancy in 25 (54%), 13 (28%), and 1 (2%), respectively. The rest of women, 7 (21.2%), did not present ZIKV seroconversion. At 11 to 32 months of life, the 13 ZIKV-exposed children had increased risk of mild cognitive delay (RR 5.1; 95%CI 1.1–24.4) compared with the 33 children unexposed, with a PAF of 53.5%. Exposed children also had increased risk of altered auditory behavior (RR 6.0; 95%CI 1.3–26.9), with a PAF of 59.5%. Conclusions A significant proportion of children exposed in utero to ZIKV developed mild cognitive delay and auditory behavioral abnormalities even in the absence of gross birth defects such as microcephaly and other neurodevelopmental domains. Furthermore, our findings suggest that over half of these abnormalities could be attributed to intrauterine ZIKV exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.