We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a Linear Vibronic Coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intra-chromophore decays, like those at conical intersections, and inter-chromophore processes, like exciton localization/delocalization and the involvement of charge transfer (CT) states. We used FrD-LVC parametrized with TD-DFT calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a Guanine-Cytosine (GC) hydrogen bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G->C CT state which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ~50% of that on C decays to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region.At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics. File list (2) download file view on ChemRxiv main_FrD-LVC.pdf (2.14 MiB) download file view on ChemRxiv SI_FrD-LVC.pdf (4.59 MiB)
We here propose a general and flexible approach, based on fragment diabatization, which incorporates charge transfer states and significantly increases the reliability of excitonic Hamiltonians for systems where the chromophores are very close. This model (FrDEx) is used to compute the electronic circular dichroism and absorption spectra of two prototype guanine-rich DNA sequences folded in quadruple helices (GQs), i.e., a fragment of the human telomeric sequence (Tel21, antiparallel), and (TGGGGT) 4 (TG4T, parallel). Calculations on different subsets of Tel21 and TG4T, from dimers to tetramers, show that FrDEx provides spectra close to the reference full quantum mechanical (QM) ones (obtained with time-dependent density functional theory), with significant improvements with respect to "standard" excitonic Hamiltonians. Furthermore, these tests enable the most cost-effective procedure for the whole GQ to be determined. FrDEx spectra of Tel21 and TG4T are also in good agreement with the QM and experimental ones and give access to interesting insights into the chemical−physical effects modulating the spectral signals.FrDEx could be profitably used to investigate many other biological and nanotechnological materials, from DNA to (opto)electronic polymers.
We here investigate the Electronic Circular Dichroism (ECD) Spectra of two representative Guanine-rich sequences folded in a Quadruple helix (GQ), by using a recently developed fragment diabatisation based excitonic model (FrDEx). FrDEx can include charge transfer (CT) excited states and consider the effect of the surrounding monomers on the local excitations (LEs). When applied to different structures generated by molecular dynamics simulations on a fragment of the human telomeric sequence (Tel21/22), FrDEx provides spectra fully consistent with the experimental one and in good agreement with that provided by quantum mechanical (QM) method used for its parametrization, i.e., TD-M05-2X. We show that the ECD spectrum is moderately sensitive to the conformation adopted by the bases of the loops and more significantly to the thermal fluctuations of the Guanine tetrads. In particular, we show how changes in the overlap of the tetrads modulate the intensity of the ECD signal. We illustrate how this correlates with changes in the character of the excitonic states at the bottom of the La and Lb bands, with larger LE and CT involvement of bases that are more closely stacked. As an additional test, we utilised FrDEx to compute the ECD spectrum of the monomeric and dimeric forms of a GQ forming sequence T30695 (5’TGGGTGGGTGGGTGGG3’), i.e., a system containing up to 24 Guanine bases, and demonstrated the satisfactory reproduction of the experimental and QM reference results. This study provides new insights on the effects modulating the ECD spectra of GQs and, more generally, further validates FrDEx as an effective tool to predict and assign the spectra of closely stacked multichromophore systems.
Here we refine and assess two computational procedures aimed to include the effect of thermal fluctuations on the electronic spectra and the ultrafast excited state dynamics of multichromophore systems, focusing on DNA duplexes. Our approach is based on a fragment diabatization procedure that, from a given Quantum Mechanical (QM) reference method, can provide the parameters (energy and coupling) of the reference diabatic states on the basis of the isolated fragments, either for a purely electronic excitonic Hamiltonian (FrDEx) or a linear vibronic coupling Hamiltonian (FrD-LVC). After having defined the most cost-effective procedure for DNA duplexes on two smaller fragments, FrDEx is used to simulate the absorption and Electronic Circular Dichroism (ECD) spectra of (GC) 5 sequences, including the coupling with the Charge Transfer (CT) states, on a number of structures extracted from classical Molecular Dynamics (MD) simulations. The computed spectra are close to the reference TD-DFT calculations and fully consistent with the experimental ones. We then couple MD simulations and FrD-LVC to simulate the interplay between local excitations and CT transitions, both intrastrand and interstrand, in GC and CG steps when included in a oligoGC or in oligoAT DNA sequence. We predict that for both sequences a substantial part of the photoexcited population on G and C decays, within 50−100 fs, to the corresponding intrastrand CT states. This transfer is more effective for GC steps that, on average, are more closely stacked than CG ones.
The excited states of three radical derivatives of guanine, i. e. guanine cation (G + ) and its two main deprotonated derivatives (GÀ H1 and GÀ H2), have been characterized in the Franck-Condon region by TD-DFT, using different functionals, CASPT2, and EOM-EE-CCSD calculations. In the gas phase, all the methods provide a similar description of the main spectral features, the pictures provided by TD-DFT, with long range corrected functionals, and EOM-EE-CCSD being very close. Solvent effects are then taken into account by a mixed discrete-continuum approach, including five water molecules of the first solvation shell and the Polarizable Continuum Model (PCM). The vibronic absorption line-width has finally been simulated at the TD-M052X level by a time dependent method within the harmonic approximation. The resulting absorption spectra are in good agreement with their experimental counterparts, providing useful indications on the use of PCM/TD-DFT based approaches to interpret the spectra of guanine based radicals within DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.