This study was aimed at characterizing a cell-surface 25 kDa glycoprotein (GP25) that was previously shown to be underproduced by a spontaneous adhesion-defective mutant D5 of Ruminococcus albus 20. An antiserum against wild-type strain 20 was adsorbed with the mutant D5 to enrich it in antibodies ' specific ' to adhesion structures of R. albus 20. The resulting antiserum, called anti-Adh serum, blocked adhesion of R. albus 20 and reacted mainly with GP25 in bacterial and extracellular protein fractions of R. albus 20. The N-terminal sequence of purified GP25 was identical to that of CbpC, a 21 kDa cellulosebinding protein (CBP) of R. albus 8. The nucleotide sequence of the gp25 gene was determined by PCR and genomic walking procedures. The gp25 gene encoded a protein of 165 aa with a calculated molecular mass of 16 940 Da that showed 729 % identity with CbpC and presented homologies with type IV pilins of Gram-negative pathogenic bacteria. Negative-staining electron microscopy revealed fine and flexible pili surrounding R. albus 20 cells while mutant cells were not piliated. In addition, immunoelectron microscopy showed that the anti-Adh serum probing mainly GP25, completely decorated the pili surrounding R. albus 20, thereby showing that GP25 was a major pilus subunit. This study shows for the first time the presence of pili at the surface of R. albus and identifies GP25 as their major protein subunit. Though GP25 was not identified as a CBP, isolated pili were shown to bind cellulose. In conclusion, these pili, which belong to the family of type IV pili, mediate adhesion of R. albus 20 to cellulose.
Ruminococcus albus produces fimbria-like structures that are involved with the bacterium's adhesion to cellulose. The subunit protein has been identified in strain 8 (CbpC) and strain 20 (GP25) and both are type IV fimbrial (Pil) proteins. The presence of a pil locus that is organized similarly in both strains is reported here together with the results of an initial examination of a second Pil protein. Downstream of the cbpC/gp25 gene (hereafter referred to as pilA1) is a second pilin gene (pilA2). Northern blot analysis of pilA1 and pilA2 transcripts showed that the pilA1 transcript is much more abundant in R. albus 8, and real-time PCR was used to measure pilA1 and pilA2 transcript abundance in R. albus 20 and its adhesion-defective mutant D5. Similar to the findings with R. albus 8, the relative expression of pilA1 in the wild-type strain was 73-fold higher than that of pilA2 following growth with cellobiose, and there were only slight differences between the wild-type and mutant strain in pilA1 and pilA2 transcript abundances, indicating that neither pilA1 nor pilA2 transcription is adversely affected in the mutant strain. Western immunoblots showed that the PilA2 protein is localized primarily to the membrane fraction, and the anti-PilA2 antiserum does not inhibit bacterial adhesion to cellulose. These results suggest that the PilA2 protein plays a role in the synthesis and assembly of type IV fimbriae-like structures by R. albus, but its role is restricted to cell-associated functions, rather than as part of the externalized fimbrial structure. INTRODUCTIONThe initial step in the degradation of cellulosic biomass by many anaerobic micro-organisms requires the adhesion of the organism to this substrate. Adhesion facilitates maximal enzyme-substrate interaction and gives the adherent cells an advantage for substrate uptake, and can be a ratelimiting step in polysaccharide hydrolysis. In the gastrointestinal tracts of herbivores and ruminants, Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes are widely believed to coordinate degradation of the cellulosic component of plant biomass. Our understanding of the adhesion mechanism(s) employed by these three bacteria has been limited by the lack of genetic tools available to dissect the process(es), but recent studies have identified a variety of structures including novel cellulosebinding modules present in cellulosomes (Ding et al., 2001;Rincon et al., 2001Rincon et al., , 2003, cell-surface-associated cellulases (Devillard et al., 2004;Mitsumori & Minato, 2000;Malburg et al., 1997), cell-surface exopolysaccharides (Mosoni & Gaillard-Martinie, 2001) and other uncharacterized cellulosebinding proteins (CBPs) (Gong et al., 1996;Miron & Forsberg, 1999). These different adhesion mechanisms are described in recent reviews (Morrison & Miron, 2000;Miron et al., 2001).Recent work in our laboratory has established that type IV Abbreviation: CBP, cellulose-binding protein.
BackgroundThermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization), were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth.ResultsOur results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran.ConclusionThis study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided resulted in dissimilar enzyme production profiles. These results indicate the importance of using different biomass sources to encourage the production of specific enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.