An intuitionistic fuzzy set is one of the efficient generalizations of a fuzzy set for dealing with vagueness/uncertainties in information. Under this environment, in this manuscript, we familiarize a new type of extensions of fuzzy sets called square-root fuzzy sets (briefly, SR-Fuzzy sets) and contrast SR-Fuzzy sets with intuitionistic fuzzy sets and Pythagorean fuzzy sets. We discover the essential set of operations for the SR-Fuzzy sets along with their several properties. In addition, we define a score function for the ranking of SR-Fuzzy sets. To study multiattribute decision-making problems, we introduce four new weighted aggregated operators, namely, SR-Fuzzy weighted average (SR-FWA) operator, SR-Fuzzy weighted geometric (SR-FWG) operator, SR-Fuzzy weighted power average (SR-FWPA) operator, and SR-Fuzzy weighted power geometric (SR-FWPG) operator over SR-Fuzzy sets. We apply these operators to select the top-rank university and show how we can choose the best option by comparing the aggregate outputs through score values.
The purpose of this paper is to define the concept of (3, 2)-fuzzy sets and discuss their relationship with other kinds of fuzzy sets. We describe some of the basic set operations on (3, 2)-fuzzy sets. (3, 2)-Fuzzy sets can deal with more uncertain situations than Pythagorean and intuitionistic fuzzy sets because of their larger range of describing the membership grades. Furthermore, we familiarize the notion of (3, 2)-fuzzy topological space and discuss the master properties of (3, 2)-fuzzy continuous maps. Then, we introduce the concept of (3, 2)-fuzzy points and study some types of separation axioms in (3, 2)-fuzzy topological space. Moreover, we establish the idea of relation in (3, 2)-fuzzy set and present some properties. Ultimately, on the basis of academic performance, the decision-making approach of student placement is presented via the proposed (3, 2)-fuzzy relation to ascertain the suitability of colleges to applicants.
ABSTRACT. In this paper, we introduce the concept of α γ -open sets as a generalization of γ-open sets in a topological space (X, τ). Using this set, we introduce α γ T 0 , α γ -T ½ , α γ T 1 , α γ T 2 , α γ D 0 , α γ D 1 and α γ D 2 spaces and study some of its properties. Finally we introduce α (γ,γ')-continuous mappings and give some properties of such mappings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.