Now-a-days, the application of hard tuning with CBN tool has been massively increased because the hard turning is a good alternative to grinding process. However, there are some issues that need to be addressed related to the CBN grades and their particular applications in the area of hard turning process. This experimental study investigated the effects of three different grades of CBN insert on the cutting forces and surface roughness. The process of hard turning was made using the AISI H13 die tool steel at containing different hardness (45 HRC, 50 HRC and 55 HRC) levels. The work material were selected on the basis of its application in the die making industries in a range of hardness of 45–55 HRC. Optimization by the central composite design approach has been used for design and analysis. The present study reported that the cutting forces and surface roughness are influenced by the alloying elements and percentage of CBN in the cutting tool material. The work material hardness, feed rate and cutting speed are found to be statistically significant on the responses. Furthermore, a comparative performance between the three different grades of CBN inserts has been shown on the cutting forces and surface roughness at different workpiece hardness. To obtain the optimum parameters from multiple responses, desirability approach has been used. The novelty/robustness of the present study is represented by its great contribution to solve practical industrial application when is developed a new process using different CBN grades for hard turning and die makers of workpiece having the hardness between 45 and 55 HRC.
With regard to the manufacturing of innovative hard-machining super alloys (i.e., Inconel-800), a potential alternative for improving the process is using a novel cutting fluid approach. Generally, the cutting fluids allow the maintenance of a better tool topography that can generate a superior surface quality of machined material. However, the chemical components of fluids involved in that process may produce harmful effects on human health and can trigger environmental concerns. By decreasing the cutting fluids amount while using sustainable methods (i.e., dry), Near Dry Machining (NDM) will be possible in order to resolve these problems. This paper discusses the features of two innovative techniques for machining an Inconel-800 superalloy by plain turning while considering some critical parameters such as the cutting force, surface characteristics (Ra), the tool wear rate, and chip morphology. The research findings highlight the near-dry machining process robustness over the dry machining routine while its great potential to resolve the heat transfer concerns in this manufacturing method was demonstrated. The results confirm other benefits of these methods (i.e., NDM) linked to the sustainability aspects in terms of the clean process, friendly environment, and permits as well as in terms of improving the manufacturing characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.