Therapies that target the programmed death-1 (PD-1) receptor have shown unprecedented rates of durable clinical responses in patients with various cancer types.1–5 One mechanism by which cancer tissues limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and its ligation to PD-1 on antigen-specific CD8 T-cells (termed adaptive immune resistance).6,7 Here we show that pre-existing CD8 T-cells distinctly located at the invasive tumour margin are associated with expression of the PD-1/PD-L1 immune inhibitory axis and may predict response to therapy. We analyzed samples from 46 patients with metastatic melanoma obtained before and during anti-PD1 therapy (pembrolizumab) using quantitative immunohistochemistry, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell receptors (TCR). In serially sampled tumours, responding patients showed proliferation of intratumoural CD8+ T-cells that directly correlated with radiographic reduction in tumour size. Pre-treatment samples obtained from responding patients showed higher numbers of CD8, PD1, and PD-L1 expressing cells at the invasive tumour margin and inside tumours, with close proximity between PD-1 and PD-L1, and a more clonal TCR repertoire. Using multivariate analysis, we established a predictive model based on CD8 expression at the invasive margin and validated the model in an independent cohort of 15 patients. Our findings indicate that tumour regression following therapeutic PD-1 blockade requires pre-existing CD8+ T cells that are negatively regulated by PD-1/PD-L1 mediated adaptive immune resistance.
The tumor suppressor p53 gene is mutated in minimally half of all cancers. It is therefore reasonable to assume that naturally occurring polymorphic genetic variants in the p53 stress response pathway might determine an individual's susceptibility to cancer. A central node in the p53 pathway is the MDM2 protein, a direct negative regulator of p53. In this report, a single nucleotide polymorphism (SNP309) is found in the MDM2 promoter and is shown to increase the affinity of the transcriptional activator Sp1, resulting in higher levels of MDM2 RNA and protein and the subsequent attenuation of the p53 pathway. In humans, SNP309 is shown to associate with accelerated tumor formation in both hereditary and sporadic cancers. A model is proposed whereby SNP309 serves as a rate-limiting event in carcinogenesis.
The adaptive immune system uses several strategies to generate a repertoire of T-and B-cell antigen receptors with sufficient diversity to recognize the universe of potential pathogens. In ␣ T cells, which primarily recognize peptide antigens presented by major histocompatibility complex molecules, most of this receptor diversity is contained within the third complementarity-determining region (CDR3) of the T-cell receptor (TCR) ␣ and  chains. Although it has been estimated that the adaptive immune system can generate up to 10 16 distinct ␣ pairs, direct assessment of TCR CDR3 diversity has not proved amenable to standard capillary electrophoresis-based DNA sequencing. We developed a novel experimental and computational approach to measure TCR CDR3 diversity based on single-molecule DNA sequencing, and used this approach to determine the CDR3 sequence in millions of rearranged TCR genes from T cells of 2 adults. We find that total TCR receptor diversity is at least 4-fold higher than previous estimates, and the diversity in the subset of CD45RO ؉ antigen-experienced ␣ T cells is at least 10-fold higher than previous estimates. These methods should prove valuable for assessment of ␣ T-cell repertoire diversity after hematopoietic cell transplantation, in states of congenital or acquired immunodeficiency, and during normal aging. (Blood. 2009;114:4099-4107)
An individual's T cell repertoire dynamically encodes their pathogen exposure history. To determine whether pathogen exposure signatures can be identified by documenting public T cell receptors (TCRs), we profiled the T cell repertoire of 666 subjects with known cytomegalovirus (CMV) serostatus by immunosequencing. We developed a statistical classification framework that could diagnose CMV status from the resulting catalog of TCRβ sequences with high specificity and sensitivity in both the original cohort and a validation cohort of 120 different subjects. We also confirmed that three of the identified CMV-associated TCRβ molecules bind CMV in vitro, and, moreover, we used this approach to accurately predict the HLA-A and HLA-B alleles of most subjects in the first cohort. As all memory T cell responses are encoded in the common format of somatic TCR recombination, our approach could potentially be generalized to a wide variety of disease states, as well as other immunological phenotypes, as a highly parallelizable diagnostic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.