Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.
The yeast Candida albicans is an opportunistic fungal pathogen which induces superficial and systemic infections in immunocompromised patients. Adherence to host tissue is critical to its ability to colonise and infect the host. The work presented here describes the synthesis of a small library of aromatic glycoconjugates (AGCs) and their evaluation as inhibitors of C. albicans adherence to exfoliated buccal epithelial cells (BECs). We identified a divalent galactoside, ligand 2a, capable of displacing over 50% of yeast cells already attached to the BECs. Fluorescence imaging indicates that 2a may bind to structural components of the fungal cell wall.
Zinc and copper are essential cations involved in numerous biological processes, and variations in their concentrations can cause diseases such as neurodegenerative diseases, diabetes and cancers. Hence, detection and quantification of these cations are of utmost importance for the early diagnosis of disease. Magnetic resonance imaging (MRI) responsive contrast agents (mainly Lanthanide(+III) complexes), relying on a change in the state of the MRI active part upon interaction with the cation of interest, e.g., switch ON/OFF or vice versa, have been successfully utilized to detect Zn2+ and are now being developed to detect Cu2+. These paramagnetic probes mainly exploit the relaxation-based properties (T1-based contrast agents), but also the paramagnetic induced hyperfine shift properties (paraCEST and parashift probes) of the contrast agents. The challenges encountered going from Zn2+ to Cu2+ detection will be stressed and discussed herein, mainly involving the selectivity of the probes for the cation to detect and their responsivity at physiologically relevant concentrations. Depending on the response mechanism, the use of fast-field cycling MRI seems promising to increase the detection field while keeping a good response. In vivo applications of cation responsive MRI probes are only in their infancy and the recent developments will be described, along with the associated quantification problems. In the case of relaxation agents, the presence of another method of local quantification, e.g., synchrotron X-Ray fluorescence, single-photon emission computed tomography (SPECT) or positron emission tomography (PET) techniques, or 19F MRI is required, each of which has its own advantages and disadvantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.