This study investigates whether improved quality of nutrients during early postnatal life has effects on adult metabolic profile and body composition in a murine model of nutritional programming. Male offspring of C57Bl/6j dams received a diet containing 21% energy (En%) as fat of either 100% vegetable oils [control (CTRL)] or 80% vegetable oils/20% tuna fish oil [rich in n-3 long-chain polyunsaturated fatty acids (n-3 LCP)] from postnatal day (PN) 2 to 42. Subsequently, mice of both experimental groups were switched to a western style diet (WSD; 21 En% fat, high saturated fatty acid [FA] content, and cholesterol) until dissection at PN98. Body composition was analyzed by dual x-ray absorptiometry during the WSD challenge. Results showed that a n-3 LCP-rich diet during postnatal life not only reduced fat accumulation by ϳ30% during the WSD challenge from PN42 to 98 (p Ͻ 0.001) but also led to a healthier plasma lipid profile, healthier plasma glucose homeostasis, and less hypertrophic adipocytes compared with CTRL. This study shows that postnatal nutrition has programming effects on adult body composition and metabolic homeostasis. In addition, it emphasizes that moderate alterations in fat quality during early postnatal life considerably affect adult metabolic health. (Pediatr Res 68: 494-499, 2010)
Correct prediction of human pharmacokinetics (PK) and the safety and efficacy of novel compounds based on preclinical data, is essential but often fails. In the current study, we aimed to improve the predictive value of ApoE*3Leiden (E3L) transgenic mice regarding the cholesterol-lowering efficacy of various statins in humans by combining pharmacokinetic with efficacy data. The efficacy of five currently marketed statins (atorvastatin, simvastatin, lovastatin, pravastatin, and rosuvastatin) in hypercholesterolemic patients (low-density lipoprotein $ 160 mg/dl) was ranked based on meta-analysis of published human trials. Additionally, a preclinical combined PK efficacy data set for these five statins was established in E3L mice that were fed a high-cholesterol diet for 4 weeks, followed by 6 weeks of drug intervention in which statins were supplemented to the diet. Plasma and tissue levels of the statins were determined on administration of (radiolabeled) drugs (10 mg/kg p.o.). As expected, all statins reduced plasma cholesterol in the preclinical model, but a direct correlation between cholesterol lowering efficacy of the different statins in mice and in humans did not reach statistical significance (R 2 5 0.11, P , 0.57). It is noteworthy that, when murine data were corrected for effective liver uptake of the different statins, the correlation markedly increased (R 2 5 0.89, P , 0.05). Here we show for the first time that hepatic uptake of statins is related to their cholesterol-lowering efficacy and provide evidence that combined PK and efficacy studies can substantially improve the translational value of the E3L mouse model in the case of statin treatment. This strategy may also be applicable for other classes of drugs and other preclinical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.