We have studied the catalysis of the exchange of the hydrogen-bonded NH-N protons of the short DNA helix (d-CCAAGCTTGG)2 by phosphate addition. The NH exchange rates were monitored by the line widths of the corresponding NH resonances in the 1H nmr spectra. The exchange catalyst phosphate is most effective on the exchange rate of the terminal CG1 base pairs. However, all internal base pairs are also moderately affected by phosphate which suggests an exchange mechanism governed by a fast equilibrium between opened and closed states of the duplex. Within the limits of error the same effectiveness of phosphate on the exchange rate of all internal NH-N protons has been observed. With the exception of the terminal base pairs, no sequence and/or position specificity of the exchange rates of the NH-N protons of the base pairs has been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.