The serological hallmark of primary biliary cirrhosis (PBC) is the presence of pyruvate dehydrogenase complex E2 subunit (PDC-E2) antimitochondrial antibodies (AMAs). Anti-PDC-E2 antibodies cross-react specifically with mycobacterial hsp65, and we have demonstrated that the motif SxGDL[ILV]AE shared by PDC-E2 212-226 and hsp's is a cross-reactive target. Having found that this same motif is present only in -galactosidase of Lactobacillus delbrueckii (BGAL LACDE), we hypothesized that this homology would also lead to crossreactivity. The mimics were tested via ELISA for reactivity and competitive cross-reactivity using sera from 100 AMA-positive and 23 AMA-negative PBC patients and 190 controls. An Escherichia coli (ECOLI) PDC-E2 mimic that has been pathogenetically linked to PBC but lacks this motif has been also tested. Anti-BGAL 266-280 LACDE antibodies were restricted to AMA-positive patients (54 of 95, 57%) and belonged to immunoglobulin (Ig) G3. Of the 190 controls, 22 (12%; P < .001) had anti-BGAL 266-280 antibodies, mainly of the IgG4 subclass. ECOLI PDC-E2 reactivity was virtually absent. BGAL 266-280 /PDC-E2 212-226 reactivity of the IgG3 isotype was found in 52 (52%) AMA-positive PBC patients but in only 1 of the controls (P < .001). LACDE BGAL 266-280 /PDC-E2 212-226 reactivity was due to crossreactivity as confirmed via competition ELISA. Antibody affinity for BGAL 266-280 was greater than for PDC-E2 mimics. Preincubation of a multireactive serum with BGAL 266-280 reduced the inhibition of enzymatic activity by 40%, while marginal effect (12%) or no effect (2%) was observed in human or ECOLI PDC-E2 mimics. In conclusion, IgG3 antibodies to BGAL LACDE cross-react with the major mitochondrial autoepitope and are characteristic of PBC.
Thiourea and dimethylthiourea are powerful scavengers of hydroxyl radicals (.OH), and dimethylthiourea has been used to test the involvement of .OH in several animal models of human disease. It is shown that both thiourea and dimethylthiourea are scavengers of HOCl, a powerful oxidant produced by neutrophil myeloperoxidase. Hence the ability of dimethylthiourea to protect against neutrophil-mediated tissue damage cannot be used as evidence for a role of .OH in causing such damage. Dimethyl sulphoxide also reacts with HOCl, but at a rate that is probably too low to be biologically significant at dimethyl sulphoxide concentrations up to 10 mM. Neither mannitol nor desferrioxamine, at the concentrations normally used in radical-generating systems, appears to react with HOCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.