1. Carbon fiber multibarrel glass microelectrodes were used to record extracellular single-unit activity during microiontophoretic application of gamma-aminobutyric acid (GABA) or bicuculline methiodide (BMI) onto layer IV barrel neurons in the somatosensory cortex of fentanyl-sedated rats. Excitatory and inhibitory aspects of the neurons' receptive fields were quantified with the use of controlled whisker stimuli. The principally activating whisker and one of its immediately adjacent neighbors were deflected alone or in paired combinations involving a condition-test paradigm. 2. Units were distinguished electrophysiologically on the basis of the time course of their action potential waveforms. Data were obtained from 26 regular-spike units (RSUs; presumed spiny stellate cells) and 7 fast-spike units (FSUs; presumed GABAergic neurons). An average of 15.0 nA of GABA produced a one-third to one-half reduction in RSU responses evoked by the maximally effective stimulus. An average of 8.7 nA of BMI was needed to counteract this reduction. This amount of BMI, in the absence of exogenous GABA, was found to increase average RSU and FSU responses by 98 and 53%, respectively, relative to predrug levels. 3. For RSUs, the BMI-induced twofold increase in responses evoked by moving the principal whisker at the neuron's best deflection angle was accompanied by an almost threefold increase in responses evoked by similarly moving an adjacent whisker. Disproportionately large percentage increases were also seen for responses to nonpreferred directions of principal and adjacent whisker movement. BMI thus effectively increased receptive field size and decreased angular tuning. Similarly, responses to stimulus offsets, which are normally smaller than ON responses, were increased proportionally more. 4. Predrug responses of FSUs were more vigorous than those of RSUs. However, FSUs showed a similar inverse relationship between percentage increase with BMI and initial response magnitude, although the proportional increases were less pronounced. 5. GABA, like BMI, had the greatest proportional effects on those responses that were initially smallest. It produced results opposite those of BMI, effectively decreasing receptive field size and sharpening angular tuning. 6. A previously described computational model of a barrel was tested for its ability to reproduce quantitatively the effects of BMI and GABA. The application of BMI was simulated by decreasing the strength of the inhibitory inputs onto the particular cell under study in the model network. GABA microiontophoresis was simulated by adding a constant hyperpolarizing voltage. The model RSUs and FSUs displayed proportional changes in response magnitude that were quantitatively similar to those of their biological counterparts. 7. Surround inhibition was greatly attenuated by BMI application, both for the real and simulated barrel neurons. Disinhibition was less pronounced for the former, perhaps because, unlike the simulated neurons, they also possess GABAB receptors, which are unaffected by BMI. 8. We conclude that the inhibitory receptive field properties of barrel neurons can be explained by intrabarrel inhibition and that the expansion of receptive field size and loss of angular tuning with BMI is due to an enhanced effectiveness of convergent, multi-whisker thalamocortical input. Examination of the model neurons' behavior suggests that the altered activity in response to GABA or BMI application, respectively, can be explained by the nonlinear effects of shifting somal membrane potential away from or toward the neuron's firing threshold.
1. Previous studies have demonstrated marked differences in the relative sizes of ON and OFF responses of neurons in the whisker/barrel system. In particular, OFF responses are unexpectedly large in thalamic neurons. Extracellular unit recordings were used to examine whether varying the time between stimulus onset and offset differently affects OFF responses of neurons in the trigeminal ganglion, ventrobasal thalamus, and somatosensory cortical layer IV. Controlled whisker stimuli were used to deflect individual vibrissal hairs in different directions. We hypothesized that, in part because of the gradual waning of central inhibition evoked by stimulus onset, OFF responses of thalamic and cortical neurons but not trigeminal ganglion cells would increase in size with longer duration stimuli, with relative changes being greatest in the cortex. 2. OFF response magnitudes for thalamic and cortical neuronal populations increased as the stimulus duration was increased from 200 to 1,400 ms. Increases were greater at nonoptimal deflection angles. Similarly, individual cells having smaller OFF responses for the short-duration stimulus tended to display proportionately greater increases when the stimulus was lengthened. OFF responses of trigeminal ganglion cells were largely unaffected by stimulus duration. 3. Barrel neurons were subclassified as regular-spike units (RSUs) or fast-spike units (FSUs) on the basis of the time course of their action potentials. ON and OFF responses were smaller in the former and, when the stimulus was lengthened, percentage increases in their OFF responses were greater than those in FSUs. Results illustrate nonlinear transformations of the thalamic input signal by RSUs, which are presumed to be excitatory barrel neurons, and extend previous findings of response similarities between thalamocortical units (TCUs) and FSUs, the latter of which are thought to be inhibitory. 4. The time course of OFF response suppression in cortical neurons suggests that stimulus onset evokes central inhibition having two components, a potent one lasting several tens of milliseconds and a weaker one lasting many hundreds of milliseconds. Background activity levels in cortex and thalamus were diminished for > or = 1,800 ms after whisker movement. 5. For TCUs, 200-ms stimuli were less likely than 1,400-ms stimuli to elicit an OFF response, but when responses occurred they consisted of a greater number of spikes timed closer together. By contrast, the 200-ms stimulus OFF responses of the RSUs and FSUs displayed longer interspike intervals than did their 1400-ms responses, with no change in the number of spikes per response.(ABSTRACT TRUNCATED AT 400 WORDS)
Layer IV of rodent somatosensory cortex contains identifiable networks of neurons, called "barrels," that are related one-to-one to individual whiskers on the face. A previous study (Simons and Carvell, 1989) described differences between the response properties of thalamic and cortical vibrissa neurons and proposed that these transformations can be explained by several features of barrel anatomy and physiology: nonlinear neuronal properties, strongly responsive inhibitory and less responsive excitatory neurons, convergent thalamic inputs to cells of both types, and interconnections among barrel neurons. In the present study these features were incorporated into a computational model in order to test their explanatory power quantitatively. The relative numbers of excitatory and inhibitory cells and the relative numbers of synapses of thalamic and intrabarrel origin were chosen to be consistent with available light and electron microscopic data. Known functional differences between excitatory and inhibitory barrel neurons were simulated through differences in spike activation functions, refractory periods, postsynaptic potential decay rates, and synaptic strengths. The model network was activated by spike trains recorded previously from thalamic neurons in response to three different whisker deflection protocols, and output, which consisted of spikes generated by the simulated neurons, was compared to data from our previous neurophysiological experiments. For each type of whisker stimulus, the same set of parameter values yielded accurate simulations of the cortical response. Realistic output was obtained under conditions where each barrel cell integrated excitatory and inhibitory synaptic inputs from a number of thalamic and other barrel neurons and where the ratios between network excitation, network inhibition, and thalamic excitation were approximately constant. Several quantities are defined that may be generally useful in characterizing neuronal networks. One important implication of the results is that thalamic relay neurons not only provide essential drive to the cortex but could, by changing their tonic activities, also directly regulate the tonic inhibition present in the cortex and thereby modulate cortical receptive field properties.
Layer IV of rodent primary somatosensory cortex is characterized by an array of whisker-related groups of neurons, known as “barrels.” Neurons within each barrel respond best to a particular whisker on the contralateral face, and, on deflection of adjacent whiskers, display relatively weak excitation followed by strong inhibition. A prominent hypothesis for the processing of vibrissal information within layer IV is that the multiwhisker receptive fields of barrel neurons reflect interconnections among neighboring barrels. An alternative view is that the receptive field properties of barrel neurons are derived from operations performed on multiwhisker, thalamic inputs by local circuitry within each barrel, independently of neighboring barrels. Here we report that adjacent whisker-evoked excitation and inhibition within a barrel are unaffected by ablation of the corresponding adjacent barrel. In supragranular neurons, on the other hand, excitatory responses to the ablated barrel’s associated whisker are substantially reduced. We conclude that the layer IV barrels function as an array of independent parallel processors, each of which individually transforms thalamic afferent input for subsequent processing by horizontally interconnected circuits in other layers.
Extracellular unit recordings were made at various depths within SmI barrel cortex of immobilized, sedated rats, in the presence and absence of titrated amounts of the GABA(A) receptor antagonist bicuculline methiodide (BMI). Principal and adjacent whiskers were moved singly, or in paired combination in a condition-test paradigm, to assess excitatory and inhibitory receptive field (RF) characteristics. Neurons were classified as regular- or fast-spike units, and divided into three laminar groups: supragranular, granular (barrel), and infragranular. BMI increased response magnitude and duration, but did not affect response latencies. The excitatory RFs of barrel units, which are the most tightly focused on the principal whisker, were the most greatly defocused by BMI; infragranular units were least affected. All three layers had approximately equal amounts of adjacent whisker-evoked, surround inhibition, but BMI counteracted this inhibition substantially in barrel units and less so in infragranular units. The effects of BMI were most consistent in the barrel; more heterogeneity was found in the non-granular layers. These lamina-dependent effects of BMI are consistent with the idea that between-whisker inhibition is generated mostly within individual layer IV barrels as a result of the rapid engagement of strong, local inhibitory circuitry, and is subsequently embedded in layer IV's output to non-layer IV neurons. The latter's surround inhibition is thus relatively resistant to antagonism by locally applied BMI. The greater heterogeneity of non-granular units in terms of RF properties and the effects of BMI is consistent with other findings demonstrating that neighboring neurons in these layers may participate in different local circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.