Silicon based photonic integrated circuit (PIC) is a research focus in producing high density photonics. One of the potential applications of silicon PIC is the sensing and measurement system. In this work, we use the one-dimensional photonic crystal (1D-PhC) cavity design which and utilize it at the PIC level design. The 1D PhC design used as the compact model has the same characteristics as experimentally demonstrated in previous works. The compact model is made from the S-parameter extraction of the 1D-PhC device which is done by using Lumerical FDTD software. The PIC design integrates the 1D-PhC device as a sensing component with a PN-phase shifter (PN-PS) to function as a refractive index (RI) sensor calibration or tuning circuit. A custom design of PN-PS device is used by simulating and extracting the bias voltage-effective index (bias-Neff) data by using Lumerical DEVICE and MODE into the circuit simulator. The circuit level simulation is done by using Lumerical Interconnect software. Finally, we show the GDSII layout design of the 1D-PhC based photonic sensor calibration circuit with an analysis of generic silicon PIC design rules. The designed PIC is applicable for the bio-sensing applications and photonic SOC component. This work also shows the promise of PIC design approach for further PIC development
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.