Although executive functioning (EF) difficulties are well documented among children and adolescents with autism spectrum disorder (ASD), little is known about real-world measures of EF among adults with ASD. Therefore, this study examined parent-reported real-world EF problems among 35 adults with ASD without intellectual disability and their correlations with adaptive functioning and co-morbid anxiety and depression symptomatology. A variable EF profile was found with prominent deficits occurring in flexibility and metacognition. Flexibility problems were associated with anxiety-related symptoms while metacognition difficulties were associated with depression symptoms and impaired adaptive functioning (though the metacognition-adaptive functioning relationship was moderated by ADHD symptoms). These persistent EF problems are predictors of broader functioning and therefore remain an important treatment target among adults with ASD.
For individuals with autism spectrum disorder (ASD), long-term outcomes have been troubling, and intact IQ has not been shown to be protective. Nevertheless, relatively little research into adaptive functioning among adults with ASD has been completed to date. Therefore, both adaptive functioning and comorbid psychopathology were assessed among 52 adults with ASD without intellectual disability (ID). Adaptive functioning was found to substantially lag behind IQ, and socialization was a particular weakness. Comorbid psychopathology was significantly correlated with the size of IQ-adaptive functioning discrepancy. These findings emphasize key intervention targets of both adaptive skill and psychopathology for transition-age youth and young adults with ASD, as well as the need for ongoing monitoring of anxiety and depression symptoms during this developmental window.
The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.
The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained 3 brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. 17 ASD participants and 10 control participants were scanned over multiple sessions (123 sessions in total). Desired network connectivity patterns were reinforced in realtime, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. Significance StatementMany disorders are characterized by underlying abnormalities in network connectivity. These abnormalities are difficult to address with explicit training procedures (which are unlikely to target the specific abnormalities). Covert neurofeedback however, can directly target these networks, positively reinforcing the desired connections. We have developed a method for reinforcing correlations in real-time, and show that such training is effective, inducing significant, long-lasting changes in connectivity between aberrant networks in Autism SpectrumDisorder. This provides a potential mechanism for modulating aberrant correlation structures in other clinical groups as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.