Transposons are mobile genetic elements and have been utilized as essential tools in genetics over the years. Though highly useful, many of the current transposon-based applications suffer from various limitations, the most notable of which are: (i) transposition is performed in vivo, typically species specifically, and as a multistep process; (ii) accuracy and/or efficiency of the in vivo or in vitro transposition reaction is not optimal; (iii) a limited set of target sites is used. We describe here a genetic analysis methodology that is based on bacteriophage Mu DNA transposition and circumvents such limitations. The Mu transposon tool is composed of only a few components and utilizes a highly efficient and accurate in vitro DNA transposition reaction with a low stringency of target preference. The utility of the Mu system in functional genetic analysis is demonstrated using restriction analysis and genetic footprinting strategies. The Mu methodology is readily applicable in a variety of current and emerging transposon-based techniques and is expected to generate novel approaches to functional analysis of genes, genomes and proteins.
The two chemical steps of phage Mu transpositional recombination, donor DNA cleavage and strand transfer, take place within higher order protein‐DNA complexes called transpososomes. At the core of these complexes is a tetramer of MuA (the transposase), bound to the two ends of the Mu genome. While transpososome assembly normally requires a number of cofactors, under certain conditions only MuA and a short DNA fragment are required. DNA requirements for this process, as well as the stability and activity of the ensuing complexes, were established. The divalent cation normally required for assembly of the stable complex could be omitted if the substrate was prenicked, if the flanking DNA was very short or if the two flanking strands were non‐complementary. The presence of a single nucleotide beyond the Mu genome end on the non‐cut strand was critical for transpososome stability. Donor cleavage additionally required at least two flanking nucleotides on the strand to be cleaved. The flanking DNA double helix was destabilized, implying distortion of the DNA near the active site. Although donor cleavage required Mg2+, strand transfer took place in the presence of Ca2+ as well, suggesting a conformational difference in the active site for the two chemical steps.
The PrsA protein of Bacillus subtilis is an essential membrane-bound lipoprotein that is assumed to assist post-translocational folding of exported proteins and stabilize them in the compartment between the cytoplasmic membrane and cell wall. This folding activity is consistent with the homology of a segment of PrsA with parvulin-type peptidyl-prolyl cis/trans isomerases (PPIase). In this study, molecular modeling showed that the parvulin-like region can adopt a parvulin-type fold with structurally conserved active site residues. PrsA exhibits PPIase activity in a manner dependent on the parvulin-like domain. We constructed deletion, peptide insertion, and amino acid substitution mutations and demonstrated that the parvulin-like domain as well as flanking N-and C-terminal domains are essential for in vivo PrsA function in protein secretion and growth. Surprisingly, none of the predicted active site residues of the parvulin-like domain was essential for growth and protein secretion, although several active site mutations reduced or abolished the PPIase activity or the ability of PrsA to catalyze proline-limited protein folding in vitro. Our results indicate that PrsA is a PPIase, but the essential role in vivo seems to depend on some non-PPIase activity of both the parvulin-like and flanking domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.