BackgroundLivestock trypanosomiasis, transmitted mainly by tsetse flies of the genus Glossina is a major constraint to livestock health and productivity in the sub-Saharan Africa. Knowledge of the prevalence and intensity of trypanosomiasis is important in understanding the epidemiology of the disease. The objectives of this study were to (a) assess the prevalence and intensity of trypanosome infections in cattle, and (b) to investigate the reasons for the heterogeneity of the disease in the tsetse infested districts of Amuru and Nwoya, northern Uganda.MethodsA cross-sectional study was conducted from September, 2011 to January, 2012. Blood samples were collected from 816 cattle following jugular vein puncture, and screened for trypanosomes by HCT and ITS-PCR. A Pearson chi-squared test and logistic regression analyses were performed to determine the association between location, age, sex, and prevalence of trypanosome infections.ResultsOut of the 816 blood samples examined, 178 (22 %) and 338 (41 %) tested positive for trypanosomiasis by HCT and ITS-PCR, respectively. Trypanosoma vivax infection accounted for 77 % of infections detected by ITS-PCR, T. congolense (16 %), T. brucei s.l (4 %) and mixed (T. vivax/ T. congolense/T.brucei) infections (3 %). The risk of trypanosome infection was significantly associated with cattle age (χ2 = 220.4, df = 3, P < 0.001). The highest proportions of infected animals were adult males (26.7 %) and the least infected were the less than one year old calves (2.0 %). In addition, the risk of trypanosome infection was significantly associated with sex (χ2 = 16.64, df = 1, P < 0.001), and males had a significantly higher prevalence of infections (26.8 %) than females (14.6 %).ConclusionOur results indicate that the prevalence and intensity of trypanosome infections are highly heterogeneous being associated with cattle age, location and sex.
Simple SummaryThe management of coccidiosis in poultry farms is mainly dependent on the use of anticoccidial drugs. Development of resistance to existing anticoccidial drugs coupled with restrictive use of antibiotics to control secondary bacterial infections following the ban on antibiotics, stresses the urgent need to explore alternative strategies for maintaining intestinal functionality in chickens for improved productivity. Prebiotics have been proposed as a solution to the intestinal problems of poultry. This study demonstrates that in ovo delivered prebiotics with or without antibiotics reduces severity of intestinal lesions and oocyst excretion induced by natural infection with Eimeria. Prebiotics protected Kuroiler chickens from coccidia in particular in the first 56 days of age and tended to have a synergistic effect with anticoccidial drug in the management of the disease post-infection in the field, with positive effects on performance and meat quality.AbstractA study was carried out to assess the efficacy of prebiotic delivered in ovo on performance, carcass traits, meat quality and gut health in the face of a natural coccidiosis infection in Kuroiler chickens. On d 12 of incubation, 150 fertile eggs were divided into a prebiotic group injected with trans-galactooligosaccharides (Bi2tos) and a control group uninjected. Hatched chicks from each group were further divided: One group received antibiotic chick formula while the other was left untreated, giving rise to 4 groups—Control (C), Antibiotic (A), Bi2tos (B), and Bi2tos + Antibiotic (AB). Prebiotic improved growth performance at six weeks of age, AB birds were the heaviest at the end of the rearing period. The highest intestinal lesion scores and oocyst counts were recorded in C birds. B group had a slightly higher carcass weight and cuts yields tended to be higher in treated groups compared to C. Meat from B group displayed a higher amount of polyunsaturated fatty acids compared to C and a positively lower n-6/n-3 ratio compared to C and A. In conclusion, prebiotics with or without antibiotics reduced severity of intestinal lesions and oocyst excretion induced by natural infection with Eimeria, with positive effects on Kuroiler chicken productive traits.
Background African trypanosomiasis, caused by protozoa of the genus Trypanosoma and transmitted by the tsetse fly, is a serious parasitic disease of humans and animals. Reliable data on the vector distribution, feeding preference and the trypanosome species they carry is pertinent to planning sustainable control strategies. Methodology We deployed 109 biconical traps in 10 villages in two districts of northwestern Uganda to obtain information on the apparent density, trypanosome infection status and blood meal sources of tsetse flies. A subset (272) of the collected samples was analyzed for detection of trypanosomes species and sub-species using a nested PCR protocol based on primers amplifying the Internal Transcribed Spacer (ITS) region of ribosomal DNA. 34 blood-engorged adult tsetse midguts were analyzed for blood meal sources by sequencing of the mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) genes. Results We captured a total of 622 Glossina fuscipes fuscipes tsetse flies (269 males and 353 females) in the two districts with apparent density (AD) ranging from 0.6 to 3.7 flies/trap/day (FTD). 10.7% (29/272) of the flies were infected with one or more trypanosome species. Infection rate was not significantly associated with district of origin (Generalized linear model (GLM), χ2 = 0.018, P = 0.895, df = 1, n = 272) and sex of the fly (χ2 = 1.723, P = 0.189, df = 1, n = 272). However, trypanosome infection was highly significantly associated with the fly’s age based on wing fray category (χ2 = 22.374, P < 0.001, df = 1, n = 272), being higher among the very old than the young tsetse. Nested PCR revealed several species of trypanosomes: T. vivax (6.62%), T. congolense (2.57%), T. brucei and T. simiae each at 0.73%. Blood meal analyses revealed five principal vertebrate hosts, namely, cattle (Bos taurus), humans (Homo sapiens), Nile monitor lizard (Varanus niloticus), African mud turtle (Pelusios chapini) and the African Savanna elephant (Loxodonta africana). Conclusion We found an infection rate of 10.8% in the tsetse sampled, with all infections attributed to trypanosome species that are causative agents for AAT. However, more verification of this finding using large-scale passive and active screening of human and tsetse samples should be done. Cattle and humans appear to be the most important tsetse hosts in the region and should be considered in the design of control interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.