Background & Aims A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis. Methods We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models. Results Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02–0.05], p z = 4.8×10 –5 ) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05–1.3], p z = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03–1.45], p z = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT ( p z = 0.002) and lower serum triglycerides ( p z = 1.5×10 –4 ). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD. Conclusions Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent. Lay summary Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including ‘cirrhosis’). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change (‘variant’) in one gene ( ‘MBOAT7’ ) was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
Animal models of human disease are a key component of translational hepatology research, and yet, there is no consensus on which model is optimal for non-alcoholic fatty liver disease (NAFLD). Here, we generated a database of 3,920 rodent models of NAFLD. Study designs were highly heterogeneous and, therefore, few models had been cited more than once.Analysis of genetic models supported the current evidence for the role of adipose dysfunction and suggested a role for innate immunity in the progression of NAFLD. We identified that high fat, high fructose diets most closely recapitulate the human phenotype of NAFLD. There was substantial variability in the nomenclature of animal models: a consensus on terminology of specialist diets is needed. More broadly, this analysis demonstrates the variability in preclinical study design, which has wider implications for the reproducibility of in vivo experiments both in the fields of hepatology and beyond. In conclusion, this systematic analysis provides a framework for phenotypic assessment of NAFLD models and highlights the need for increased standardization and replication.
We describe a group of Drosophila cDNAs that encode MADs box proteins and which are members of the MEF2 (myocyte enhancer-binding factor 2) family of transcription factors. Drosophila has a single MEF2 gene, DMEF2, that is alternatively spliced to produce different transcripts and which is expressed in the mesodermal primordium before gastrulation. The mechanisms responsible for the subsequent subdivision of the mesoderm are unknown. However, DMEF2 may play a role in this important event because our experiments show that it is a downstream target for twist and that its early expression pattern modulates as the mesoderm is organising into cell groupings with distinct fates. DMEF2 is also expressed in both the segregating primordia and the differentiated cells of the somatic, visceral and heart musculature. It is the only known gene expressed in these three main types of muscle throughout differentiation.
Background: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. Method: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g.
Background: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). Method: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. Results: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. Discussion: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.