Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
Background
Insufficient sleep has been associated with weight gain and metabolic dysregulation, with one suggested mechanism being through reduction in diet quality. Experimental evidence supports a causal effect of sleep timings on diet but this may not be applicable to a free-living adolescent population. In this analysis we use daily measures of sleep timings and diet quality, to examine the effect of sleep duration and timing on diet quality the following day among free-living adolescents.
Methods
The ROOTS study is a prospective cohort recruited from secondary schools in Cambridgeshire and Suffolk (UK). Participants (n = 815) at mean age 15.0y (SD 0.3y) completed a diet diary and wore a combined heart rate and accelerometer device over 4 consecutive days. Sleep duration and timing (midpoint) were derived from acceleration and heart rate traces, while daily energy density and fruit and vegetable intake were calculated from dietary data. Analyses were performed at day-level (1815 person-days). Multilevel random effects models were used to test associations between sleep each night and subsequent day diet, with daily sleep and diet measures nested within individuals and schools, and adjusted for day-level and individual-level confounding variables.
Results
Adolescents slept a mean of 7.88 hrs (SD 1.10) per night, reporting a mean energy density of 2.12 kcal/g (SD 0.48) and median energy-adjusted daily fruit and vegetable intake of 137.3 g (IQR 130.4). One hour shorter sleep duration was associated with lower intake of fruit and vegetables (-6.42 g, 95%CI -1.84, -10.99) the following day. An association with higher dietary energy density (0.016 kcal/g, 95%CI 0.034, -0.002) the following day was observed but did not reach statistical significance. Sleep timing was not associated with either fruit and vegetable intake (-2.52 g/d, 95%CI -7.66, 2.62) or dietary energy density (-0.001 kcal/g, 95%CI -0.022, 0.020).
Conclusions
Our observational findings from a free-living adolescent population support the experimental evidence for a causal role of sleep on diet, with shorter sleep duration at night leading to a small decrease in diet quality the following day. These findings support experimental evidence to suggest inclusion of sleep duration as one component of interventions designed to improve diet quality and weight status in adolescents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.