Subcutaneous perfusion and oxygenation are important components of immunity to wound infections. The SENIC score identifies systemic physiological variables that are important to the development of wound infection. Nevertheless, PsqO2 is the more powerful predictor of wound infection. Moreover, PsqO2 can be manipulated by available clinical means, and thus may direct interventions to prevent infection.
Oxygen tension and collagen deposition were measured in standardized, subcutaneous wounds in 33 postoperative surgical patients. Pertinent clinical and wound parameters were analyzed by Pearson's correlation test and sequential linear regression analysis. Collagen deposition was directly and significantly proportional to wound oxygen tension and measures of perfusion. There were no significant correlations with hematocrit, estimated blood loss, length of operation, smoking, age, weight, sex, or urine output. This study in humans confirms animal experiments showing that collagen deposition and tensile strength in wounds are limited by perfusion and tissue oxygen tension. It appears unnecessary to maintain hemoglobin at normal levels to support repair, provided that peripheral perfusion can be maintained at a high level in compensation for anemia. These circumstances reflect the fact that although oxygen is essential to many aspects of healing, and must be delivered at adequate partial pressures, reparative tissue consumes relatively little of it.
Acute reduction of hemoglobin concentration to 7 g/dl does not produce detectable changes in human cognitive function. Further reduction of hemoglobin level to 6 and 5 g/dl produces subtle, reversible increases in reaction time and impaired immediate and delayed memory. These are the first prospective data to demonstrate subtle degraded human function with acute anemia of hemoglobin concentrations of 6 and 5 g/dl. This reversibility of these decrements with erythrocyte transfusion suggests that our model can be used to test the efficacy of erythrocytes, oxygen therapeutics, or other treatments for acute anemia.
We hypothesized that tissue hyperoxia would enhance and hypoxia inhibit neovascularization in a wound model. Therefore, we used female Swiss-Webster mice to examine the influence of differential oxygen treatment on angiogenesis. One milliliter plugs of Matrigel, a mixture of matrix proteins that supports but does not itself elicit angiogenesis, were injected subcutaneously into the mice. Matrigel was used without additive or with added vascular endothelial growth factor (VEGF) or anti-VEGF antibody. Animals were maintained in hypoxic, normoxic, or one of four hyperoxic environments: hypoxia -- 13 percent oxygen at 1 atmosphere absolute (ATA); normoxia -- 21 percent oxygen at 1 ATA; hyperoxia -- (groups a-d) 100 percent oxygen for 90 minutes twice daily at the following pressures: Group a, 1 ATA; Group b, 2 ATA; Group c, 2.5 ATA; Group d, 3.0 ATA. Subcutaneous oxygen tension was measured in all groups. The Matrigel was removed 7 days after implantation. Sections were graded microscopically for the extent of neovascularization. Angiogenesis was significantly greater in all hyperoxic groups and significantly less in the hypoxic group compared with room air-exposed controls. Anti-VEGF antibody abrogated the angiogenic effect of both VEGF and increased oxygen tension. We conclude that angiogenesis is proportional to ambient pO(2) over a wide range. This confirms the clinical impression that angiogenesis requires oxygen. Intermittent oxygen exposure can satisfy the need for oxygen in ischemic tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.