A major adaptation to exercise is new capillary formation in skeletal muscle. On the basis of angiogenesis in tumors and during development, several angiogenic growth factors may be involved, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and transforming growth factor-beta 1 (TGF-beta 1). In 9-wk-old female Wistar rats, mRNA expression for these three growth factors in gastrocnemius muscle was examined by quantitative Northern analysis after a single 1-h run at 15 or 20 m/min at 10 degrees incline in room air. A third group ran at 15 m/min in 12% O2, and resting control groups were included at inspired O2 fractions of 0.21 and 0.12. Exercise significantly increased mRNA levels two- to fourfold, which was evident over the first 4 h postexercise; by 8 and 24 h, mRNA levels returned to baseline. For all three factors, mRNA levels were significantly higher after exercise at 20 than at 15 m/min. Hypoxia at rest doubled VEGF and TGF-beta 1 message but had no effect on bFGF. Hypoxic exercise further raised VEGF mRNA levels but had no effect on the other factors. We suggest that VEGF, bFGF, and TGF-beta 1 may be involved in the angiogenic response to exercise and that reduced intracellular PO2 (as occurs during normoxic exercise) may be part of the stimulus to such growth factor production.
Vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation, both of which are precursors to new capillary growth. Angiogenesis is a vital adaptation to exercise training, and the exercise-induced reduction in intracellular PO2 has been proposed as a stimulus for this process. Thus we studied muscle cell PO2 [myoglobin PO2 (MbPO2)] during exercise in normoxia and in hypoxia (12% O2) and studied the mRNA levels of VEGF in six untrained subjects after a single bout of exercise by quantitative Northern analysis. Single-leg knee extension provided the acute exercise stimulus: a maximal test followed by 30 min at 50% of the peak work rate achieved in this graded test. Because peak work rate was not affected by hypoxia, the absolute and relative work rates were identical in hypoxia and normoxia. Three pericutaneous needle biopsies were collected from the vastus lateralis muscle, one at rest and then the others at 1 h after exercise in normoxia or hypoxia. At rest (control), VEGF mRNA levels were very low (0.38 +/- 0.04 VEGF/18S). After exercise in normoxia or hypoxia, VEGF mRNA levels were much greater (16.9 +/- 6.7 or 7.1 +/- 1.8 VEGF/18S, respectively). In contrast, there was no measurable basic fibroblast growth factor mRNA response to exercise at this 1-h postexercise time point. Magnetic resonance spectroscopy of myoglobin confirmed a reduction in MbPO2 in hypoxia (3.8 +/- 0.3 mmHg) compared with normoxia (7.2 +/- 0.6 mmHg) but failed to reveal a relationship between MbPO2 during exercise and VEGF expression. This VEGF mRNA increase in response to acute exercise supports the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis but questions the importance of a reduced cellular PO2 as a stimulus for this response.
Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 +/- 0.04) and after (1.2 +/- 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 +/- 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 +/- 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.
We investigated whether, during maximal exercise, intercostal muscle blood flow is as high as during resting hyperpnoea at the same work of breathing. We hypothesized that during exercise, intercostal muscle blood flow would be limited by competition from the locomotor muscles. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle perfusion were measured simultaneously in ten trained cyclists by near-infrared spectroscopy using indocyanine green dye. Measurements were made at several exercise intensities up to maximal (WR max ) and subsequently during resting isocapnic hyperpnoea at minute ventilation levels up to those at WR max . During resting hyperpnoea, intercostal muscle blood flow increased linearly with the work of breathing (R 2 = 0.94) to 73.0 ± 8.8 ml min −1 (100 g) −1 at the ventilation seen at WR max (work of breathing ∼550-600 J min −1 ), but during exercise it peaked at 80% WR max (53.4 ± 10.3 ml min −1 (100 g) −1 ), significantly falling to 24.7 ± 5.3 ml min −1 (100 g)at WR max . At maximal ventilation intercostal muscle vascular conductance was significantly lower during exercise (0.22 ± 0.05 ml min −1 (100 g) −1 mmHg −1 ) compared to isocapnic hyperpnoea (0.77 ± 0.13 ml min −1 (100 g) −1 mmHg −1 ). During exercise, both cardiac output and vastus lateralis muscle blood flow also plateaued at about 80% WR max (the latter at 95.4 ± 11.8 ml min −1 (100 g) −1 ). In conclusion, during exercise above 80% WR max in trained subjects, intercostal muscle blood flow and vascular conductance are less than during resting hyperpnoea at the same minute ventilation. This suggests that the circulatory system is unable to meet the demands of both locomotor and intercostal muscles during heavy exercise, requiring greater O 2 extraction and likely contributing to respiratory muscle fatigue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.