Supplementary data are available at Bioinformatics online.
We have developed a graphical tool to evaluate summaries of Affymetrix probe level data. Plots and summary statistics offer a picture of how an expression measure performs in several important areas. This picture facilitates the comparison of competing expression measures and the selection of methods suitable for a specific investigation. The key is a benchmark data set consisting of a dilution study and a spike-in study. Because the truth is known for these data, we can identify statistical features of the data for which the expected outcome is known in advance. Those features highlighted in our suite of graphs are justified by questions of biological interest and motivated by the presence of appropriate data.
Various databases have harnessed the wealth of publicly available microarray data to address biological questions ranging from across-tissue differential expression to homologous gene expression. Despite their practical value, these databases rely on relative measures of expression and are unable to address the most fundamental question—which genes are expressed in a given cell type. The Gene Expression Barcode is the first database to provide reliable absolute measures of expression for most annotated genes for 131 human and 89 mouse tissue types, including diseased tissue. This is made possible by a novel algorithm that leverages information from the GEO and ArrayExpress public repositories to build statistical models that permit converting data from a single microarray into expressed/unexpressed calls for each gene. For selected platforms, users may upload data and obtain results in a matter of seconds. The raw data, curated annotation, and code used to create our resource are also available at http://rafalab.jhsph.edu/barcode.
The DNA of most vertebrates is depleted in CpG dinucleotide: a C followed by a G in the 5' to 3' direction. CpGs are the target for DNA methylation, a chemical modification of cytosine (C) heritable during cell division and the most well-characterized epigenetic mechanism. The remaining CpGs tend to cluster in regions referred to as CpG islands (CGI). Knowing CGI locations is important because they mark functionally relevant epigenetic loci in development and disease. For various mammals, including human, a readily available and widely used list of CGI is available from the UCSC Genome Browser. This list was derived using algorithms that search for regions satisfying a definition of CGI proposed by Gardiner-Garden and Frommer more than 20 years ago. Recent findings, enabled by advances in technology that permit direct measurement of epigenetic endpoints at a whole-genome scale, motivate the need to adapt the current CGI definition. In this paper, we propose a procedure, guided by hidden Markov models, that permits an extensible approach to detecting CGI. The main advantage of our approach over others is that it summarizes the evidence for CGI status as probability scores. This provides flexibility in the definition of a CGI and facilitates the creation of CGI lists for other species. The utility of this approach is demonstrated by generating the first CGI lists for invertebrates, and the fact that we can create CGI lists that substantially increases overlap with recently discovered epigenetic marks. A CGI list and the probability scores, as a function of genome location, for each species are available at http://www.rafalab.org.
The Gene Expression Barcode project, http://barcode.luhs.org, seeks to determine the genes expressed for every tissue and cell type in humans and mice. Understanding the absolute expression of genes across tissues and cell types has applications in basic cell biology, hypothesis generation for gene function and clinical predictions using gene expression signatures. In its current version, this project uses the abundant publicly available microarray data sets combined with a suite of single-array preprocessing, quality control and analysis methods. In this article, we present the improvements that have been made since the previous version of the Gene Expression Barcode in 2011. These include a variety of new data mining tools and summaries, estimated transcriptomes and curated annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.