Adamantane derivatives, such as amantadine and rimantadine, have been reported to block the transmembrane domain (TM) of the M2 protein of influenza A virus (A/M2) but their clinical use has been discontinued due to evolved resistance in humans. Although experiments and simulations have provided adequate information about the binding interaction of amantadine or rimantadine to the M2 protein, methods for predicting binding affinities of whole series of M2 inhibitors have so far been scarcely applied. Such methods could assist in the development of novel potent inhibitors that overcome A/M2 resistance. Here we show that alchemical free energy calculations of ligand binding using the Bennett acceptance ratio (BAR) method are valuable for determining the relative binding potency of A/M2 inhibitors of the aminoadamantane type covering a binding affinity range of only ∼2 kcal mol(-1). Their binding affinities measured by isothermal titration calorimetry (ITC) against the A/M2TM tetramer from the Udorn strain in its closed form at pH 8 were used as experimental probes. The binding constants of rimantadine enantiomers against M2TMUdorn were measured for the first time and found to be equal. Two series of alchemical free energy calculations were performed using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids to mimic the membrane environment. A fair correlation was found for DPPC that was significantly improved using DMPC, which resembles more closely the DPC lipids used in the ITC experiments. This demonstrates that binding free energy calculations by the BAR approach can be used to predict relative binding affinities of aminoadamantane derivatives toward M2TM with good accuracy.
The development of novel anti-influenza drugs is of great importance because of the capability of influenza viruses to occasionally cross interspecies barriers and to rapidly mutate. One class of anti-influenza agents, aminoadamantanes, including the drugs amantadine and rimantadine now widely abandoned due to virus resistance, bind to and block the pore of the transmembrane domain of the M2 proton channel (M2TM) of influenza A. Here, we present one of the still rare studies that interprets thermodynamic profiles from isothermal titration calorimetry (ITC) experiments in terms of individual energy contributions to binding, calculated by the computationally inexpensive implicit solvent/implicit membrane molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach, for aminoadamantane compounds binding to M2TM of the avian "Weybridge" strain. For all eight pairs of aminoadamantane compounds considered, the trend of the predicted relative binding free energies and their individual components, effective binding energies and changes in the configurational entropy, agrees with experimental measures (ΔΔG, ΔΔH, TΔΔS) in 88, 88, and 50% of the cases. In addition, information yielded by the MM-PBSA approach about determinants of binding goes beyond that available in component quantities (ΔH, ΔS) from ITC measurements. We demonstrate how one can make use of such information to link thermodynamic profiles from ITC with structural causes on the ligand side and, ultimately, to guide decision making in lead optimization in a prospective manner, which results in an aminoadamantane derivative with improved binding affinity against M2TM(Weybridge).
Molecular simulations were used to design large scale loop motions in the enzyme cyclophilin A and NMR and biophysical methods were employed to validate the models.
Fragment-based drug discovery is an increasingly popular method to identify novel small-molecule drug candidates. One of the limitations of the approach is the difficulty of accurately characterizing weak binding events. This work reports a combination of X-ray diffraction, surface plasmon resonance experiments and molecular dynamics simulations for the characterization of binders to different isoforms of the cyclophilin (Cyp) protein family. Although several Cyp inhibitors have been reported in the literature, it has proven challenging to achieve high binding selectivity for different isoforms of this protein family. The present studies have led to the identification of several structurally novel fragments that bind to diverse Cyp isoforms in distinct pockets with low millimolar dissociation constants. A detailed comparison of the merits and drawbacks of the experimental and computational techniques is presented, and emerging strategies for designing ligands with enhanced isoform specificity are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.