In a recent paper, we have studied the enumeration of Hamiltonian cycles (abbreviated HCs) on the grid cylinder graph P m+1 × C n , where m grows while n is fixed. In this sequel, we study a much harder problem of enumerating HCs on the same graph only this time letting n grow while m is fixed. We propose a characterization for non-contractible HCs which enables us to prove that their numbers h nc m (n) satisfy a recurrence relation for every fixed m. From the computational data, we conjecture that the coefficient for the dominant positive characteristic root in the explicit formula for h nc m (n) is 1.
We continue our research in the enumeration of Hamiltonian cycles (HCs) on thin cylinder grid graphs C m × P n+1 by studying a triangular variant of the problem. There are two types of HCs, distinguished by whether they wrap around the cylinder. Using two characterizations of these HCs, we prove that, for fixed m, the number of HCs of both types satisfy some linear recurrence relations. For small m, computational results reveal that the two
Graph Theory
International audience
We study the enumeration of Hamiltonian cycles on the thin grid cylinder graph $C_m \times P_{n+1}$. We distinguish two types of Hamiltonian cycles, and denote their numbers $h_m^A(n)$ and $h_m^B(n)$. For fixed $m$, both of them satisfy linear homogeneous recurrence relations with constant coefficients, and we derive their generating functions and other related results for $m\leq10$. The computational data we gathered suggests that $h^A_m(n)\sim h^B_m(n)$ when $m$ is even.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.