The ability of Staphylococcus aureus to adhere to the extracellular matrix and plasma proteins deposited on biomaterials is a significant factor in the pathogenesis of orthopaedic-device related infections. S. aureus possesses many adhesion proteins on its surface, but it is not known how they interact with each other to form stable interactions with the substrate.A novel method was developed for extracting adhesins from the S. aureus cell wall, which could then be further analysed. The protocol involves using a FastPrep instrument to mechanically disrupt the cell walls resulting in native cell walls. Ionically and covalently bound proteins were then solubilised using sodium dodecyl sulphate (SDS) and lysostaphin, respectively. Western blot analysis of covalently bound proteins using anti-protein A and anticlumping factor A sera showed that S. aureus produces most surface proteins in early growth, and less in postexponential and stationary growth.Immuno-gold labelling of protein A, and clumping factor A was observed all over the bacteria and showed no distinct surface distribution pattern. However, this labelling showed expression of surface associated proteins varied in a growth-phase dependent and cell-density dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.