Abstract. The existing methods of predicting with confidence give good accuracy and confidence values, but quite often are computationally inefficient. Some partial solutions have been suggested in the past. Both the original method and these solutions were based on transductive inference. In this paper we make a radical step of replacing transductive inference with inductive inference and define what we call the Inductive Confidence Machine (ICM); our main concern in this paper is the use of ICM in regression problems. The algorithm proposed in this paper is based on the Ridge Regression procedure (which is usually used for outputting bare predictions) and is much faster than the existing transductive techniques. The inductive approach described in this paper may be the only option available when dealing with large data sets.
In this paper we apply Conformal Prediction (CP) to the k-Nearest Neighbours
Regression (k-NNR) algorithm and propose ways of extending the typical
nonconformity measure used for regression so far. Unlike traditional regression
methods which produce point predictions, Conformal Predictors output predictive
regions that satisfy a given confidence level. The regions produced by any
Conformal Predictor are automatically valid, however their tightness and
therefore usefulness depends on the nonconformity measure used by each CP. In
effect a nonconformity measure evaluates how strange a given example is
compared to a set of other examples based on some traditional machine learning
algorithm. We define six novel nonconformity measures based on the k-Nearest
Neighbours Regression algorithm and develop the corresponding CPs following
both the original (transductive) and the inductive CP approaches. A comparison
of the predictive regions produced by our measures with those of the typical
regression measure suggests that a major improvement in terms of predictive
region tightness is achieved by the new measures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.