Surveillance European bat lyssavirus Rabies Zoonoses Conservation A B S T R A C T Worldwide, there are more than 1100 species of the Order Chiroptera, 45 of which are present in Europe, and 16 in the UK. Bats are reservoirs of, or can be infected by, several viral diseases, including rabies virus strains (in the Lyssavirus genus). Within this genus are bat variants that have been recorded in Europe; European bat lyssavirus 1 (EBLV-1), European bat lyssavirus 2 (EBLV-2) and, four currently unclassified isolates. Since 1977, 783 cases of EBLVs (by isolation of viral RNA) have been recorded in Europe. EBLV-1 or EBLV-2 has been identified in 12 bat species, with over 95% of EBLV-1 infections identified in Eptesicus serotinus. EBLV-2 is associated with Myotis species (Myotis daubentonii and Myotis dasycneme). A programme of passive surveillance in the United Kingdom between 1987 and 2004 tested 4871 bats for lyssaviruses. Of these, four M. daubentonii (3.57% of submitted M. daubentonii)were positive for EBLV-2. Potential bias in the passive surveillance includes possible overrepresentation of synanthropic species and regional biases caused by varying bat submission numbers from different parts of the UK. In 2003, active surveillance in the UK began, and has detected an antibody prevalence level of 1-5% of EBLV-2 in M. daubentonii (n = 350), and one bat with antibodies to EBLV-1 in E. serotinus (n = 52). No cases of live lyssavirus infection or lyssavirus viral RNA have been detected through active surveillance. Further research and monitoring regarding prevalence, transmission, pathogenesis and immunity is required to ensure that integrated bat conservation continues throughout Europe, whilst enabling informed policy decision regarding both human and wildlife health issues.
In 2003-06, targeted (active) surveillance for European bat lyssaviruses (EBLVs) was undertaken throughout England, focusing on two species most likely to host these viruses, Myotis daubentonii and Eptesicus serotinus. Blood was sampled for the detection of EBLV-specific neutralizing antibodies and oropharyngeal swabs were taken for the detection of viral RNA or infectious virus in saliva. Between 2003 and 2006, 273 E. serotinus and 363 M. daubentonii blood samples were tested by the EBLV-1 or EBLV-2 specific modified fluorescent antibody neutralization test. The EBLV-2 antibody prevalence estimate was 1.0-4.1% (95% confidence interval [CI]; mean=2.2%) for M. daubentonii. European bat lyssavirus type 1-specific antibodies were detected only in a single E. serotinus. Other nontarget species (n=5) were sampled in small numbers (n=24), with no EBLV-specific antibody detected. No viral RNA or live virus was detected in any of the oropharyngeal swabs analyzed. Host RNA was detected from 83% of the oropharyngeal swabs analyzed (total swabs 2003-06: n=766). These data show that EBLV-2 is present in M. daubentonii in England. In contrast, there is insufficient evidence to suggest that EBLV-1 is present in E. serotinus in England, although further research is warranted.
Transferred nuclear Overhauser enhancement (TRNOE) experiments have been performed to investigate the bound conformation of the trisaccharide repeating unit of the Streptococcus Group A cell-wall polysaccharide. Thus, the conformations of propyl 3-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-2-O-(alpha-L-rhamnopyran osyl)- alpha-L-rhamnopyranoside [C(A')B] (1) as a free ligand and when complexed to the monoclonal antibody Strep 9 were examined. Improved insights about the conformational preferences of the glycosidic linkages of the trisaccharide ligand showed that the free ligand populates various conformations in aqueous solution, thus displaying relatively flexible behavior. The NOE HNAc-H2A', which was not detected in previous work, accounts for a conformation at the beta-(1-->3) linkage with a phi angle of approximately 180 degrees. Observed TRNOEs for the complex are weak, and their analysis was further complicated by spin diffusion. With the use of transferred rotating-frame Overhauser enhancement (TRROE) experiments, the amount of spin diffusion was assessed experimentally, proving that all of the observed long-range TRNOEs arose through spin diffusion. Four interglycosidic distances, derived from the remaining TRNOEs and TRROEs, together with repulsive constraints, derived from the absence of TRROE effects, were used as input parameters in simulated annealing and molecular mechanics calculations to determine the bound conformation of the trisaccharide. Complexation by the antibody results in the selection of one defined conformation of the carbohydrate hapten. This bound conformation, which is a local energy minimum on the energy maps calculated for the trisaccharide ligand, shows only a change from a +gauche to a -gauche orientation at the psi angle of the alpha-(1-->2) linkage when compared to the global minimum conformation. The results infer that the bound conformation of the Streptococcus Group A cell-wall polysaccharide is different from its previously proposed solution structure (Kreis et al., 1995).
Passive surveillance for European bat lyssaviruses (eblvs) in the uk began in 1987, and between 1987 and 2004, 4,883 bats of European origin (4,871 belonging to 17 UK resident species and 12 belonging to seven non-uk resident species) were tested. The proportions and numbers of each species submitted from different regions varied considerably, partly owing to inherent biases in the passive surveillance, and there were seasonal variations in the numbers, sex and age of the bats. Contact with cats was reported in approximately 30 per cent of the bats submitted. Daubenton's bat (Myotis daubentonii) was the only species found to be positive for lyssavirus infection, with four cases of eblv type 2 identified, in 1996, 2002, 2003 and 2004. No active infection with eblv type 1 was recorded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.