Ceftriaxone is an antibiotic that reliably attenuates the reinstatement of cocaine seeking after extinction while preventing the nucleus accumbens (NA) core glutamate efflux that drives reinstatement. However, when rats undergo abstinence without extinction, ceftriaxone attenuates context‐primed cocaine seeking but NA core glutamate efflux still increases. Here, we sought to determine if the same would occur when cocaine seeking is prompted by both context and discrete cues (cue‐induced seeking) after cocaine abstinence. Male rats self‐administered intravenous cocaine accompanied by drug‐associated cues (light + tone) for 2 h/day for 14 days. Rats then experienced abstinence with daily handling but no extinction training for 2 weeks. Ceftriaxone (200 mg/kg IP) or vehicle was administered during the last 6 days of abstinence. During a cue‐induced cocaine seeking test, microdialysis procedures were conducted. Rats were perfused at the end of the test for later Fos analysis. A separate cohort of rats was infused with the retrograde tracer cholera toxin B in the NA core and underwent the same self‐administration and relapse procedures. Ceftriaxone increased baseline glutamate and attenuated both cue‐induced cocaine seeking and NA core glutamate efflux during this test. Ceftriaxone reduced Fos expression in regions sending projections to the NA core (prefrontal cortex, basolateral amygdala, ventral tegmental area) and specifically reduced Fos in prelimbic cortex and not infralimbic cortex neurons projecting to the NA core. Thus, when cocaine seeking is induced by drug‐associated cues, ceftriaxone is able to attenuate relapse by preventing NA core glutamate efflux, likely through reducing activity in prelimbic NA core‐projecting neurons.
Opioid-alcohol polysubstance use is prevalent and worsens treatment outcomes. Here we assessed whether co-consumption of oxycodone and alcohol would influence intake of one another, demand for oxycodone, and the neurocircuitry underlying cue-primed reinstatement of oxycodone-seeking. Male and female rats underwent oxycodone intravenous self-administration (IVSA) with access to either alcohol (20% v/v) and water or only water immediately after the IVSA session. Next, economic demand for intravenous oxycodone was assessed while access to alcohol and/or water continued. Control rats self-administered sucrose followed by access to alcohol and/or water. Rats underwent extinction training and brains were processed for c-fos mRNA expression immediately following a cue-primed reinstatement test. While both sexes decreased oxycodone intake if they had access to alcohol, and decreased alcohol intake if they had access to oxycodone, female oxycodone+alcohol rats exhibited decreased demand elasticity for intravenous oxycodone and increased cue-primed reinstatement while male rats did not. Spontaneous withdrawal signs were correlated with oxycodone intake while alcohol intake was correlated with anxiety-like behavior. Alcohol consumption increased the number of basolateral and central amygdala neurons activated during sucrose and oxycodone reinstatement and the number of ventral and dorsal striatum neurons engaged by sucrose reinstatement. Nucleus accumbens shell dopamine 1 receptor containing neurons displayed activation patterns consistent with oxycodone reinstatement. Thus, alcohol alters the motivation to seek oxycodone in a sex-dependent manner and alters the neural circuitry engaged by cue-primed reinstatement of sucrose and oxycodone-seeking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.