Covariance matrix plays a central role in multivariate statistical analysis. Significant advances have been made recently on developing both theory and methodology for estimating large covariance matrices. However, a minimax theory has yet been developed. In this paper we establish the optimal rates of convergence for estimating the covariance matrix under both the operator norm and Frobenius norm. It is shown that optimal procedures under the two norms are different and consequently matrix estimation under the operator norm is fundamentally different from vector estimation. The minimax upper bound is obtained by constructing a special class of tapering estimators and by studying their risk properties. A key step in obtaining the optimal rate of convergence is the derivation of the minimax lower bound. The technical analysis requires new ideas that are quite different from those used in the more conventional function/sequence estimation problems.Comment: Published in at http://dx.doi.org/10.1214/09-AOS752 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
Network analysis is becoming one of the most active research areas in statistics. Significant advances have been made recently on developing theories, methodologies and algorithms for analyzing networks. However, there has been little fundamental study on optimal estimation. In this paper, we establish optimal rate of convergence for graphon estimation. For the stochastic block model with $k$ clusters, we show that the optimal rate under the mean squared error is $n^{-1}\log k+k^2/n^2$. The minimax upper bound improves the existing results in literature through a technique of solving a quadratic equation. When $k\leq\sqrt{n\log n}$, as the number of the cluster $k$ grows, the minimax rate grows slowly with only a logarithmic order $n^{-1}\log k$. A key step to establish the lower bound is to construct a novel subset of the parameter space and then apply Fano's lemma, from which we see a clear distinction of the nonparametric graphon estimation problem from classical nonparametric regression, due to the lack of identifiability of the order of nodes in exchangeable random graph models. As an immediate application, we consider nonparametric graphon estimation in a H\"{o}lder class with smoothness $\alpha$. When the smoothness $\alpha\geq1$, the optimal rate of convergence is $n^{-1}\log n$, independent of $\alpha$, while for $\alpha\in(0,1)$, the rate is $n^{-2\alpha/(\alpha+1)}$, which is, to our surprise, identical to the classical nonparametric rate.Comment: Published at http://dx.doi.org/10.1214/15-AOS1354 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
This paper considers estimation of sparse covariance matrices and establishes the optimal rate of convergence under a range of matrix operator norm and Bregman divergence losses. A major focus is on the derivation of a rate sharp minimax lower bound. The problem exhibits new features that are significantly different from those that occur in the conventional nonparametric function estimation problems. Standard techniques fail to yield good results, and new tools are thus needed. We first develop a lower bound technique that is particularly well suited for treating "two-directional" problems such as estimating sparse covariance matrices. The result can be viewed as a generalization of Le Cam's method in one direction and Assouad's Lemma in another. This lower bound technique is of independent interest and can be used for other matrix estimation problems. We then establish a rate sharp minimax lower bound for estimating sparse covariance matrices under the spectral norm by applying the general lower bound technique. A thresholding estimator is shown to attain the optimal rate of convergence under the spectral norm. The results are then extended to the general matrix $\ell_w$ operator norms for $1\le w\le \infty$. In addition, we give a unified result on the minimax rate of convergence for sparse covariance matrix estimation under a class of Bregman divergence losses.Comment: Published in at http://dx.doi.org/10.1214/12-AOS998 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
In the context of large-scale multiple hypothesis testing, the hypotheses often possess certain group structures based on additional information such as Gene Ontology in gene expression data and phenotypes in genome-wide association studies. It is hence desirable to incorporate such information when dealing with multiplicity problems to increase statistical power. In this article, we demonstrate the benefit of considering group structure by presenting a p-value weighting procedure which utilizes the relative importance of each group while controlling the false discovery rate under weak conditions. The procedure is easy to implement and shown to be more powerful than the classical Benjamini–Hochberg procedure in both theoretical and simulation studies. By estimating the proportion of true null hypotheses, the data-driven procedure controls the false discovery rate asymptotically. Our analysis on one breast cancer dataset confirms that the procedure performs favorably compared with the classical method.
The Gaussian graphical model, a popular paradigm for studying relationship among variables in a wide range of applications, has attracted great attention in recent years. This paper considers a fundamental question: When is it possible to estimate low-dimensional parameters at parametric square-root rate in a large Gaussian graphical model? A novel regression approach is proposed to obtain asymptotically efficient estimation of each entry of a precision matrix under a sparseness condition relative to the sample size. When the precision matrix is not sufficiently sparse, or equivalently the sample size is not sufficiently large, a lower bound is established to show that it is no longer possible to achieve the parametric rate in the estimation of each entry. This lower bound result, which provides an answer to the delicate sample size question, is established with a novel construction of a subset of sparse precision matrices in an application of Le Cam's lemma. Moreover, the proposed estimator is proven to have optimal convergence rate when the parametric rate cannot be achieved, under a minimal sample requirement.The proposed estimator is applied to test the presence of an edge in the Gaussian graphical model or to recover the support of the entire model, to obtain adaptive rate-optimal estimation of the entire precision matrix as measured by the matrix ℓq operator norm and to make inference in latent variables in the graphical model. All of this is achieved under a sparsity condition on the precision matrix and a side condition on the range of its spectrum. This significantly relaxes the commonly imposed uniform signal strength condition on the precision matrix, irrepresentability condition on the Hessian tensor operator of the covariance matrix or the ℓ1 constraint on the precision matrix. Numerical results confirm our theoretical findings. The ROC curve of the proposed algorithm, Asymptotic Normal Thresholding (ANT), for support recovery significantly outperforms that of the popular GLasso algorithm.1. Introduction. The Gaussian graphical model, a powerful tool for investigating the relationship among a large number of random variables in a complex system, is used in a wide range of scientific applications. A central question for Gaussian graphical models is how to recover the structure of an undirected Gaussian graph. Let G = (V, E) be an undirected graph representing the conditional dependence relationship between components of a random vector Z = (Z 1 , . . . , Z p ) T as follows. The vertex set V = {V 1 , . . . , V p } represents the components of Z. The edge set E consists of pairs (i, j) indicating the conditional dependence between Z i and Z j given all other components. In applications, the following question is fundamental: Is there an edge between V i and V j ? It is well known that recovering the structure of an undirected Gaussian graph G = (V, E) is equivalent to recovering the support of the population precision matrix of the data in the Gaussian graphical model. Let
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.