Fermi Large Area Telescope data reveal an excess of GeV gamma rays from the direction of the Galactic Center and bulge. Several explanations have been proposed for this excess including an unresolved population of millisecond pulsars (MSPs) and self-annihilating dark matter. It has been claimed that a key discriminant for or against the MSP explanation can be extracted from the properties of the luminosity function describing this source population. Specifically, is the luminosity function of the putative MSPs in the Galactic Center consistent with that characterizing the resolved MSPs in the Galactic disk? To investigate this we have used a Bayesian Markov Chain Monte Carlo to evaluate the posterior distribution of the parameters of the MSP luminosity function describing both resolved MSPs and the Galactic Center excess. At variance with some other claims, our analysis reveals that, within current uncertainties, both data sets can be well fit with the same luminosity function.
The Galactic Center Excess (GCE) is an extended gamma-ray source in the central region of the Galaxy found in Fermi Large Area Telescope (Fermi-LAT) data. One of the leading explanations for the GCE is an unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Due to differing star formation histories it is expected that the MSPs in the Galactic bulge are older and therefore dimmer than those in the Galactic disk. Additionally, correlations between the spectral parameters of the MSPs and the spin-down rate of the corresponding neutron stars have been observed. This implies that the bulge MSPs may be spectrally different from the disk MSPs. We perform detailed modelling of the MSPs from formation until observation. Although we confirm the correlations, we do not find they are sufficiently large to significantly differentiate the spectra of the bulge MSPs and disk MSPs when the uncertainties are accounted for. Our results demonstrate that the population of MSPs that can explain the gamma-ray signal from the resolved MSPs in the Galactic disk and the unresolved MSPs in the boxy bulge and nuclear bulge can consistently be described as arising from a common evolutionary trajectory for some subset of astrophysical sources common to all these different environments. We do not require that there is anything unusual about inner Galaxy MSPs to explain the GCE. Additionally, we use a more accurate geometry for the distribution of bulge MSPs and incorporate dispersion measure estimates of the MSPs' distances. We find that the elongated boxy bulge morphology means that some the bulge MSPs are closer to us and so easier to resolve. We identify three resolved MSPs that have significant probabilities of belonging to the bulge population.
The abundance and narrow magnitude dispersion of Red Clump (RC) stars make them a popular candidate for mapping the morphology of the bulge region of the Milky Way. Using an estimate of the RC’s intrinsic luminosity function, we extracted the three-dimensional density distribution of the RC from deep photometric catalogues of the VISTA Variables in the Via Lactea (VVV) survey. We used maximum entropy-based deconvolution to extract the spatial distribution of the bulge from Ks-band star counts. We obtained our extrapolated non-parametric model of the bulge over the inner 40° × 40° region of the Galactic centre. Our reconstruction also naturally matches on to a parametric fit to the bulge outside the VVV region and inpaints overcrowded and high extinction regions. We found a range of bulge properties consistent with other recent investigations based on the VVV data. In particular, we estimated the bulge mass to be in the range $[1.3,1.7]\times 10^{10} \, \mathrm{M}_\odot$, the X-component to be between 18 per cent and 25 per cent of the bulge mass, and the bulge angle with respect to the Sun–Galactic centre line to be between 18° and 32°. Studies of the FermiLarge Area Telescope (LAT) gamma-ray Galactic centre excess suggest that the excess may be traced by Galactic bulge distributed sources. We applied our deconvolved density in a template fitting analysis of this Fermi–LAT GeV excess and found an improvement in the fit compared to previous parametric-based templates.
Recently it has become apparent that the Galactic center excess (GCE) is spatially correlated with the stellar distribution in the Galactic bulge. This has given extra motivation for the unresolved population of millisecond pulsars (MSPs) explanation for the GCE. However, in the "recycling" channel the neutron star forms from a core collapse supernovae that undergoes a random "kick" due to the asymmetry of the explosion. This would imply a smoothing out of the spatial distribution of the MSPs. We use N -body simulations to model how the MSP spatial distribution changes. We estimate the probability distribution of natal kick velocities using the resolved gamma-ray MSP proper motions, where MSPs have random velocities relative to the circular motion with a scale parameter of 77 ± 6 km/s. We find that, due to the natal kicks, there is an approximately 10% increase in each of the bulge MSP spatial distribution dimensions and also the bulge MSP distribution becomes less boxy but is still far from being spherical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.