Previous studies of the critical behavior of ionic solutions in nonpolar solvents showed mainly upper critical solution temperatures. Now, we report for the solution of tetra-n-butyl ammonium bromide (N4444Br) in toluene a nearly closed miscibility loop, where the lower critical solution temperature (Tc=297.75+/-0.05 K, xc=0.0270+/-5x10(-4)) is located in the region, which is metastable in respect to crystallization of the salt. The new observation is in variance to the former findings according to which the phase separation of ionic solutions in nonpolar solvents is similar to that of the model of charged hard spheres in a dielectric continuum, termed restricted primitive model (RPM), which has an upper critical solution point.
Self-organized criticality describes the emergence of complexity in dynamical nonequilibrium systems. In this paper we introduce a unique approach whereby a driven energy conversion is utilized as a sampling bias for ordered arrangements in molecular dynamics simulations of atomic and molecular fluids. This approach gives rise to dramatically accelerated nucleation rates, by as much as 30 orders of magnitude, without the need of predefined order parameters, which commonly employed rare-event sampling methods rely on. The measured heat fluxes suggest how the approach can be generalized.
As shown previously, it is possible to apply configurational and kinetic thermostats simultaneously in order to induce a steady thermal flux in molecular dynamics simulations of many-particle systems. This flux appears to promote motion along potential gradients and can be utilized to enhance the sampling of ordered arrangements, i.e., it can facilitate the formation of a critical nucleus. Here we demonstrate that the same approach can be applied to molecular systems, and report a significant enhancement of the homogeneous crystal nucleation of a carbon dioxide (EPM2 model) system. Quantitative ordering effects and reduction of the particle mobilities were observed in water (TIP4P-2005 model) and carbon dioxide systems. The enhancement of the crystal nucleation of carbon dioxide was achieved with relatively small conjugate thermal fields. The effect is many orders of magnitude bigger at milder supercooling, where the forward flux sampling method was employed, than at a lower temperature that enabled brute force simulations of nucleation events. The behaviour exhibited implies that the effective free energy barrier of nucleation must have been reduced by the conjugate thermal field in line with our interpretation of previous results for atomic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.