Substituted imidazolium ionic liquids (ILs) were investigated for their reactivity towards Na12Ge17 as a model system containing redox‐sensitive Zintl cluster anions. The ILs proved widely inert for imidazolium cations with a 1,2,3‐trisubstitution at least by alkyl groups, and for the anion bis(trifluoromethylsulfonyl)azanide (TFSI). A minute conversion of Na12Ge17 observed on long‐time contact with such ILs was not caused by dissolution of the salt‐like compound, and did thus not provide dissolved Ge clusters. Rather, a cation exchange led to the transfer of Na+ ions into solution. In contrast, by using benzophenone as an oxidizer, heterogeneous redox reactions of Na12Ge17 were initiated, transferring a considerable part of Na+ into solution. At optimized conditions, an X‐ray amorphous product NaGe6.25 was obtained, which was thermally convertible to the crystalline type‐II clathrate Na24–δGe136 with almost completely Na‐filled polyhedral cages, and α‐Ge. The presented method thus provides unexpected access to Na24–δGe136 in bulk quantities.
The metastable type-II clathrate Na 24-δ Ge 136 was obtained from Na 12 Ge 17 by applying a two-step procedure. At first, Na 12 Ge 17 was reacted at 70°C with a solution of benzophenone in the ionic liquid (IL) 1,3-dibutyl-2-methylimidazolium-bis(trifluoromethylsulfonyl) azanide. The IL was inert towards Na 12 Ge 17 , but capable of dissolving the sodium salts formed in the redox reaction. By annealing at 340°C under an argon atmosphere, the X-ray amorphous intermediate product was transformed to crystalline Na 24-δ Ge 136 (δ � 2) and α-Ge in an about 1 : 1 mass ratio. The product was characterized by X-ray powder diffraction, chemical analysis, and 23 Na solid-state NMR spectroscopy. Metallic properties of Na 24-δ Ge 136 were revealed by a significant Knight shift of the 23 Na NMR signals and by a Pauli-paramagnetic contribution to the magnetic susceptibility. At room temperature, Na 24-δ Ge 136 slowly ages, with a tendency to volume decrease and sodium loss.
Tunable aryl alkyl ionic liquids (TAAILs) are ionic liquids (ILs) with a 1-aryl-3-alkylimidazolium cation having differently substituted aryl groups. Herein, nine TAAILs with the bis(trifluoromethylsulfonyl)imide anion are utilized in combination with and without ethylene glycol (EG) as reaction media for the rapid microwave synthesis of platinum nanoparticles (Pt-NPs). TAAILs allow the synthesis of small NPs and are efficient solvents for microwave absorption. Transmission electron microscopy (TEM) shows that small primary NPs with sizes of 2 nm to 5 nm are obtained in TAAILs and EG/TAAIL mixtures. The Pt-NPs feature excellent activity as electrocatalysts in the hydrogen evolution reaction (HER) under acidic conditions, with an overpotential at a current density of 10 mA cm−2 as low as 32 mV vs the reversible hydrogen electrode (RHE), which is significantly lower than the standard Pt/C 20% with 42 mV. Pt-NPs obtained in TAAILs also achieved quantitative conversion in the hydrosilylation reaction of phenylacetylene with triethylsilane after just 5 min at 200 °C.
Imidazolium-based ionic liquids are very popular for different applications because of their low viscosity and melting point. However, the hydrogen atom at the C2 position of the imidazolium cation can easily be deprotonated by a base, resulting in a reactive carbene. If an inert ionic liquid is needed, it is necessary to introduce an unreactive alkyl or aryl group at the C2 position to prevent deprotonation. Tunable aryl alkyl ionic liquids (TAAILs) were first introduced by our group in 2009 and are characterized by a phenyl group at the N1 position, which offers the possibility to fine-tune the physicochemical properties by using different electron-donating or -withdrawing substituents. In this work, we present a new series of TAAILs where the C2 position is blocked by a methyl, propyl or phenyl group. For each of the blocking groups, the phenyl and three different phenyl derivatives (2-Me, 4-OMe, 2,4-F 2 ) are compared with respect to melting point, viscosity, conductivity and electrochemical window. In addition, the differences between blocked and unblocked TAAILs with regard to their electrochemical reduction potentials are investigated by quantum chemical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.