The effect of different kinds of weight normalization on the outcome of a simple competitive learning rule is analyzed. It is shown that there are important differences in the representation formed depending on whether the constraint is enforced by dividing each weight by the same amount (“divisive enforcement”) or subtracting a fixed amount from each weight (“subtractive enforcement”). For the divisive cases weight vectors spread out over the space so as to evenly represent “typical” inputs, whereas for the subtractive cases the weight vectors tend to the axes of the space, so as to represent “extreme” inputs. The consequences of these differences are examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.