Within state-of-the-art gesture-based upper-limb myoelectric prosthesis control, gesture recognition commonly relies on the classification of features extracted from electromygraphic (EMG) data gathered from the amputee's residual forearm musculature. Despite best efforts in broadly maximizing gesture recognition accuracy, there does not yet exist a feature-classifier combination accepted as best-practice. In turn, this work hypothesizes that no single feature-classifier combination can consistently maximize accuracy across subjects, positing instead that control schemes should be personalized to the individual. To investigate this hypothesis, the study employed the 40-subject, 49gesture Ninapro DB2 to compare the performance of 7 different historic, more recent and state-of-the-art feature sets, in combination with 5 machine learning classifiers commonly seen within EMG-based pattern recognition literature. The results demonstrate the ability of Linear Discriminant Analysis (LDA) to marginally exceed other more computationally intensive classifiers in terms of mean accuracy, while the feature set which maximized the highest proportion of individuals' accuracies was shown to vary with both classifier choice and gesture count.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.