Background Asymptomatic reservoirs of malaria parasites are common yet are difficult to detect, posing a problem for malaria control. If control programmes focus on mosquito control and treatment of symptomatic individuals only, malaria can quickly resurge if interventions are scaled back. Foci of parasite populations must be identified and treated. Therefore, an active case detection system that facilitates detection of asymptomatic parasitaemia and gametocyte carriers was developed and tested in the Macha region in southern Zambia. Methods Each week, nurses at participating rural health centres (RHC) communicated the number of rapid diagnostic test (RDT) positive malaria cases to a central research team. During the dry season when malaria transmission was lowest, the research team followed up each positive case reported by the RHC by a visit to the homestead. The coordinates of the location were obtained by GPS and all consenting residents completed a questionnaire and were screened for malaria using thick blood film, RDT, nested-PCR, and RT-PCR for asexual and sexual stage parasites. Persons who tested positive by RDT were treated with artemether/lumefantrine (Coartem ® ). Data were compared with a community-based study of randomly selected households to assess the prevalence of asymptomatic parasitaemia in the same localities in September 2009. Results In total, 186 and 141 participants residing in 23 case and 24 control homesteads, respectively, were screened. In the case homesteads for which a control population was available (10 of the 23), household members of clinically diagnosed cases had a 8.0% prevalence of malaria using PCR compared to 0.7% PCR positive individuals in the control group (p = 0.006). The case and control groups had a gametocyte prevalence of 2.3% and 0%, respectively but the difference was not significant (p = 0.145). Conclusions This pilot project showed that active case detection is feasible and can identify reservoirs of asymptomatic infection. A larger sample size, data over multiple low transmission seasons, and in areas with different transmission dynamics are needed to further validate this approach.
BackgroundThe burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The objective of this study was to identify environmental risk factors for malaria transmission using remote sensing technologies to guide malaria control interventions in a region of declining burden of malaria.MethodsSatellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province, Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness, topographic position index and hydrological models of stream networks.ResultsA total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of RDT positive households and incident infections were more likely to be located in high-risk areas derived from prevalence data. Based on the spatial risk map, targeting households in the top 80th percentile of malaria risk would require malaria control interventions directed to only 24% of the households.ConclusionsRemote sensing technologies can be used to target malaria control interventions in a region of declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria elimination.
BackgroundRapid diagnostic tests (RDTs) detecting histidine-rich protein 2 (PfHRP2) antigen are used to identify individuals with Plasmodium falciparum infection even in low transmission settings seeking to achieve elimination. However, these RDTs lack sensitivity to detect low-density infections, produce false negatives for P. falciparum strains lacking pfhrp2 gene and do not detect species other than P. falciparum.MethodsResults of a PfHRP2-based RDT and Plasmodium nested PCR were compared in a region of declining malaria transmission in southern Zambia using samples from community-based, cross-sectional surveys from 2008 to 2012. Participants were tested with a PfHRP2-based RDT and a finger prick blood sample was spotted onto filter paper for PCR analysis and used to prepare blood smears for microscopy. Species-specific, real-time, quantitative PCR (q-PCR) was performed on samples that tested positive either by microscopy, RDT or nested PCR.ResultsOf 3,292 total participants enrolled, 12 (0.4%) tested positive by microscopy and 42 (1.3%) by RDT. Of 3,213 (98%) samples tested by nested PCR, 57 (1.8%) were positive, resulting in 87 participants positive by at least one of the three tests. Of these, 61 tested positive for P. falciparum by q-PCR with copy numbers ≤ 2 x 103 copies/μL, 5 were positive for both P. falciparum and Plasmodium malariae and 2 were positive for P. malariae alone. RDT detected 32 (53%) of P. falciparum positives, failing to detect three of the dual infections with P. malariae. Among 2,975 participants enrolled during a low transmission period between 2009 and 2012, sensitivity of the PfHRP2-based RDT compared to nested PCR was only 17%, with specificity of >99%. The pfhrp gene was detected in 80% of P. falciparum positives; however, comparison of copy number between RDT negative and RDT positive samples suggested that RDT negatives resulted from low parasitaemia and not pfhrp2 gene deletion.ConclusionsLow-density P. falciparum infections not identified by currently used PfHRP2-based RDTs and the inability to detect non-falciparum malaria will hinder progress to further reduce malaria in low transmission settings of Zambia. More sensitive and specific diagnostic tests will likely be necessary to identify parasite reservoirs and achieve malaria elimination.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0544-3) contains supplementary material, which is available to authorized users.
BackgroundAs malaria transmission declines in many regions of sub-Saharan Africa, interventions to identify the asymptomatic reservoir are being deployed with the goals of improving surveillance and interrupting transmission. Reactive case detection strategies, in which individuals with clinical malaria are followed up at their home and household residents and neighbours are screened and treated for malaria, are increasingly used as part of malaria elimination programmes.MethodsA reactive screen-and-treat programme was implemented by the National Malaria Control Centre in Southern Province, Zambia, in which individuals residing within 140 m of an index case were screened with a malaria rapid diagnostic test (RDT) and treated if positive. The operational challenges during the early stages of implementing this reactive screen-and-treat programme in the catchment area of Macha Hospital in Southern Province, Zambia were assessed using rural health centre records, ground truth evaluation of community health worker performance, and data from serial cross-sectional surveys. The proportion of individuals infected with Plasmodium falciparum who were identified and treated was estimated by simulating reactive screen-and-treat and focal drug administration cascades.ResultsWithin the 1st year of implementation, community health workers followed up 32 % of eligible index cases. When index cases were followed up, 66 % of residents were at home in the index households and 58 % in neighbouring households. Forty-one neighbouring households of 26 index households were screened, but only 13 (32 %) were within the 140-m screening radius. The parasite prevalence by RDT was 22 % in index households and 5 % in neighbouring households. In a simulation model with complete follow-up, 22 % of the total infected population would be detected with reactive screen-and-treat but 57 % with reactive focal drug administration.ConclusionsWith limited resources, coverage and diagnostic tools, reactive screen-and-treat will likely not be sufficient to achieve malaria elimination in this setting. However, high coverage with reactive focal drug administration could be efficient at decreasing the reservoir of infection and should be considered as an alternative strategy.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1460-x) contains supplementary material, which is available to authorized users.
Antibodies to Plasmodium falciparum are specific biomarkers that can be used to monitor parasite exposure over broader time frames than microscopy, rapid diagnostic tests, or molecular assays. Consequently, seroprevalence surveys can assist with monitoring the impact of malaria control interventions, particularly in the final stages of elimination, when parasite incidence is low. The protein array format to measure antibodies to diverse P. falciparum antigens requires only small sample volumes and is high throughput, permitting the monitoring of malaria transmission on large spatial and temporal scales. We expanded the use of a protein microarray to assess malaria transmission in settings beyond those with a low malaria incidence. Antibody responses in children and adults were profiled, using a P. falciparum protein microarray, through community-based surveys in three areas in Zambia and Zimbabwe at different stages of malaria control and elimination. These three epidemiological settings had distinct serological profiles reflective of their malaria transmission histories. While there was little correlation between transmission intensity and antibody signals (magnitude or breadth) in adults, there was a clear correlation in children younger than 5 years of age. Antibodies in adults appeared to be durable even in the absence of significant recent transmission, whereas antibodies in children provided a more accurate picture of recent levels of transmission intensity. Seroprevalence studies in children could provide a valuable marker of progress toward malaria elimination. IMPORTANCE As malaria approaches elimination in many areas of the world, monitoring the effect of control measures becomes more important but challenging. Low-level infections may go undetected by conventional tests that depend on parasitemia, particularly in immune individuals, who typically show no symptoms of malaria. In contrast, antibodies persist after parasitemia and may provide a more accurate picture of recent exposure. Only a few parasite antigens—mainly vaccine candidates—have been evaluated in seroepidemiological studies. We examined antibody responses to 500 different malaria proteins in blood samples collected through community-based surveillance from areas with low, medium, and high malaria transmission intensities. The breadth of the antibody responses in adults was broad in all three settings and was a poor correlate of recent exposure. In contrast, children represented a better sentinel population for monitoring recent malaria transmission. These data will help inform the use of multiplex serology for malaria surveillance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.