Amoebic gill disease (AGD) is emerging as one of the most significant health challenges affecting farmed Atlantic salmon in the marine environment. It is caused by the amphizoic amoeba Neoparamoeba perurans, with infestation of gills causing severe hyperplastic lesions, compromising overall gill integrity and function. This study used histology, transmission electron microscopy (TEM), immunohistochemistry and transcript expression to relate AGD‐associated pathological changes to changes in the morphology and distribution of chloride cells (CCs) in the gills of Atlantic salmon (Salmo salar L.) showing the progression of an AGD infection. A marked reduction in numbers of immunolabelled CCs was detected, and a changing pattern in distribution and morphology was closely linked with the level of basal epithelial hyperplasia in the gill. In addition, acute degenerative ultrastructural changes to CCs at the lesion site were observed with TEM. These findings were supported by the early‐onset downregulation of Na+/K+‐ATPase transcript expression. This study provides supportive evidence that histological AGD lesion assessment was a good qualitative tool for AGD scoring and corresponded well with qPCR genomic Paramoeba perurans quantification. Ultrastructural changes induced in salmon CCs as a result of AGD are reported here for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.