Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
The use of dichlorofluorescin (DCFH) as a measure of reactive oxygen species was studied in aqueous media. Hydrogen peroxide oxidized DCFH to fluorescent dichlorofluorescein (DCF), and the oxidation was amplified by the addition of ferrous iron. Hydrogen peroxide-induced DCF formation in the presence of ferrous iron was completely inhibited by deferoxamine and partially inhibited by ethylenediaminetetraacetic acid, but was augmented by diethylenetriaminepentaacetic acid. Iron-peroxide-induced oxidation of DCFH was partially inhibited by catalase but not by horseradish peroxidase. Nonchelated iron-peroxide oxidation of DCFH was partially inhibited by several hydroxyl radical scavengers, but was independent of the scavenger concentration, and this suggests that free hydroxyl radical is not involved in the oxidation of DCFH in this system. Superoxide anion did not directly oxidize DCFH. Data suggest that H2O2-Fe(2+)-derived oxidant is mainly responsible for the nonenzymatic oxidation of DCFH. In addition, peroxidase alone and oxidants formed during the reduction of H2O2 by peroxidase oxidize DCFH. Since DCFH oxidation may be derived from several reactive intermediates, interpretation of specific reactive oxygen species involved in biological systems should be approached with caution. However, DCFH remains an attractive probe as an overall index of oxidative stress in toxicological phenomena.
The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.